audioGraph
12/12/2011

iOS Audio Processing Graph demonstration

“An audio processing graphs a Core Foundation—style opaque type, AUGramt, t

you use to construct and manage an audio unit psougchain. A graph can leverage the
capabilities of multiple audio units and multipender callback functions, allowing you

to create nearly any audio processing solutioncgruimagine” +£rom Apple’s Audio

Unit Hosting Guide For iOS

AudioGraph is a superset of Apple's MixerHost agaglon.

Features include:

* Mono & stereo mic/line input
* Audio effects including:
o0 Ring modulator
FFT passthrough using Accelerate vDSP framework.
Real-time pitch shifting and detection using STFT
Simple variable speed delay using a ring buffer
Recursive moving average filter with variable numdsiepoints
o Convolution example with variable filter cutoff ffreency
» Stereo level meter
* Synthesizer example - sine wave with envelope geoer
* iOS 5 features (from Chris Adamson) including:
o MIDI sampler audio unit
o file player audio unit
0 audio unit effects
* Runs on iPad, iPhone, and iPod-Touch
* Open source
* Available as free download from iTunes App Store
* Music by Van Lawton
» Everything from MixerHost

O O oo

Requirements

iPad, iPhone, or iPod-Touch (iOS 5.x)
Headphones.

Instructions

Launch the app and press Play.

Source code, documentation, support, downloads

audioGraph websitéattp://zerokidz.com/audiograph

source code in Xcode project formattps://github.com/tkzic/audiograph
support/questions/commengaidiograph@zerokidz.com

audioGraph at iTunes App Storbttp://itunes.apple.com/app/audiograph/id486193487

Credits

Chris Adamson

Stephan M. Bernsee

Michael Tyson

Steven W. Smith

Apple Core-Audio mailing list
stackoverflow.com

Apple iOS developer program

Thank you.

keywords

core audio, iOS, audio units, audio processinglgrapre midi, iPad, iPhone, iPod-
Touch, MIDI, Sampler, FFT, Accelerate Framework) 8dsp, objective-C, C, C++,
audio, signal processing, digital filters, STFTdmueffects, convolution, open source,
iI0S 5, callback, streaming, pitch shifting, pitattettion.

Table of Contents

= 100 | (01 € 7=] [RSSRPPPRIN 1
FEAtUIES INCIUAE:o eemmmoe et e et e e e e e e e eeeeamr e e e e e eeeenes 1
REQUITEMENTS ...ttt ae e e e e e e e e e e eaaaeaeaeaeas 2

[IS (U (o] § [T 2

Source code, documentation, SUPPOIT........couiiiiiiiiiiiiiiiiiiiieiieieeeieieeeeeeeeeeeeeeeeeeeeas 2
(O (=T [£ S PP TS PPPPPPPPPPPPPP 2
3T 0] {0 PP PPPPPPP 2
TabIE Of CONLENESuiiiiiiiiieeiii e e e e e e e e e 2
System design and ProgrammMiNg.............. .o «eeeeeeeeeeeeeseaeeeeeaaeeaeeeeeeeeeeameemen 3
GELHING SLAMEA ... e 3
Recommend development SEtUPoovvvviiiiiiiiieeceeee e 4
OVBIVIBW ...ttt ettt e e e ettt et e e e e e s e e bbb e et et e e eeenn e e eeeeeeeesanns 5
SOUICE TIIBS...ciiiee e e et e e e e e et e e e ns 6
System Design and USer INTEITACE o eeeeeeieeiieiie it eraaa e 8
audioGraph Signal Path ..o 8
... 8
Mic/line input callback effect ProCeSSING ... e eeeeeieiiiiiiiiiiiiiiiiiiieeeeee e 9
IPAd USEI INTEITACE......eeiiiiiiiii it ieeeeeee e e e e e 10
(70 (=30 U [0 [To RS = (1] o TR 10
Setup the AUAIO SESSIONcueviiiiiiiiiiiiiia s eerseneees 10
Define Audio Stream Formats (asbd’s)cceeeemuumiimiimiimi e 13
Configure and initialize the audio processing graph................eeeeeeeeeieeieinennennnnns 16
Communicating with the user INterface ..., 18
Handling events and iNTEITUPLIONS e eeeeeeieeee e eeeeas 20
NOtES ON AUAIO UNILS....ciiiiiiiiiiiiiieiie ettt 20
EffECES UNILS ..ottt 20
MIDI Sampler UNit........oooooiiiiiiiii e 21
FIleplayer UNIT it cemee ittt mmmmme e s e e eeeeee e 21
AUAIO CAlIDACKS.......ee e 21
Mic/Line input callback ... 22
Signal processing in audio callbacks ... 24
RING MOAUIALOT ... 24
SIMPIE dEIAY 26
Recursive moving average (Iowpass) filter. ..o . e 29
Low Pass conVOIULION fIlteruueeiiieceeiiii i 30
FET PasS throUghooooiiiii st 32
STFT, pitch shifting and detection............coueeuiiiiiiiii s 36
Synthesizer CallDacK............ooovviiiiii e 38
DTV 7 =] (o] o] .4 1= o PP 42
REIEIENCES ...ttt ettt e e et e s es et r e e e e e e e e e e 42

System design and programming

Getting started

I had no intention to write this code. | was wokkion another project — trying to detect
the audio frequency of a car engine. You can pragadot of stuff without knowing

anything about Core Audio but eventually you may into a situation, like | did, where
you want to process data at the sample levelidfishyour situation you may find this
project helpful. At the very least it will give yaworking example of the iOS signal
processing infrastructure.

There is no definitive set of instructions for Cénedio. Currently the best resource is the
work of Chris Adamson, including the draft of higcoming book “Core Audio”.

The Apple developer resources are great. This grejarted out as an Apple sample
code project called MixerHost. Working code is ofteore useful than the sort of
documentation you're reading at this very moment.

So if you're looking for answers, they're in thedeo The source code for this project is
available as a free download in Xcode 4.x projentnit at
https://github.com/tkzic/audiograph

Core Audio programs are typically a hybrid of C j€&ibive-C and C++. My

programming style is “cut and paste”. Some migliticalash and burn. In other words,
don’t expect anything you would find in a computeience book. For example, you will
see at least three different methods of printimgranessages to the console. Why? Code
was copied from three different places. The goate lare:

* Make stuff work
* Try to understand why and write it down
* Optimize

You can learn a lot by removing pieces of code se&ing what breaks. My nephew took
apart appliances and reassembled them using feartst fhey would usually work just
fine.

Please read the “Audio Unit Hosting Guide For I@&"the Apple iOS developer library
and any other material you can find by GooglingSiOore Audio. You may not
understand it the first time. Unlike human relasibips, it will eventually make sense.

Just in case nobody mentioned this: To actuallyyaur Xcode projects on a device you

need to become a member of the iOS developer pro(a9).

Recommend development setup

» Device running iOS 5.x
» Mac Computer running OS 10.6 or greater
» Xcode 4.x

The simulator is great but not adequate for tesfioge Audio. Try using the newest
device you can find, with the most recent operasiygtem. Other useful but non-
essential items...

* AniOS MIDI interface (or a WIFI MIDI app like MidTouch)
* A USB stereo audio interface. (I have tested th#fiGrMic)

Overview

Audiograph is a superset of the MixerHost samptiedoom Apple. MixerHost provides
structure for processing audio at the sample lievehllback functions.

input 1 callback multi-
function channel

output
mixer — P

input 2

v

This structure is called an audio processing gr&pk.components are audio units.

Your hosting application !
Audic processing graph i ,
: |
;) ' |
Effect unit Remote /O unit | ! D
it alar et i Wirual |
S0 output
| | device |
! i
; Qutput element ‘ ‘ i ! _‘>
Render |[¢———==| Render |[(=—— Render Ki=———i i
callback [————| callback | callback #y i
i &L o
i 1
= Controi flow

> Audio data fiow

Callbacks pull audio from a source, process it, st it along. Processing typically
includes things like:

» filtering
» effects
e analysis

* synthesis

Callbacks can also act as signal generators —asizthg audio by producing sample
data.

Prior to i0OS5, audio units were limited to 10 andimg, and format conversion. New
audio unit types added in iOS5 include:

» Effects (reverb, filtering, distortion, etc.,)
* MIDI sampler
» file player

In this document I'll focus on specific tasks -thathat baffled and confused me - like
reading stereo input data and convolution. Hopgfydiu will benefit from my mistakes.

Source files

In a project with many files it's helpful to knowhere to look.

Classes

MixerHostAudio.h
MixerHostAudio.m

These files define the MixerHostAudio class and pose the ‘model’ for the project.
Callbacks, utility functions, instance and classhuods. All of the core audio processing
happens here.

Classes/MixerHostViewController.h
Classes/MixerHostViewController.m

These files comprise the ‘controller’ for the pidje-or simplicity there is only one view

controller. All user interface processing happesreh

Views

Resources/en.lproj/MixerHostViewController.xib
Resources/en.lproj/MixerHostViewController~ipad.xib

These files comprise the ‘view’ for the project.ejtare the nib files which contain the
user interface screens. The iPad and iPhone vieare she same controller.

Other Sources

smbPitchShift.m
An adaptation of Stephan M. Bernsee’s STFT pitaftisg functions.

TPCircularBuffer.h
TPCircularBuffer.c

A slightly modified version of Michael Tyson’s rirguffer implementation.
SNFCoreAudioUtils.h
SNFCoreAudioUtils.c

Core Audio error printing utility functions from @k Adamson.

Sound Files

Resources/lead.aupreset
/Sounds/lead.aif

A preset file and it corresponding base soundditehe MIDI sampler.
Sounds/dmxbeat.aiff
The sound file which is played by the file playede unit.

Resources/sounds/Caitlin.caf
Resources/sounds/congaloop.caf

Stereo guitar and mono drum loop files, playedstiaaming callbacks.

System Design and User Interface

audioGraph Signal Path

multi
channel
mixer au
guitar file callback bus 0
—_—
beats file e callback bus 1
mic/line remote io au callback bus 2 au remote speaker
effect io au
synth
callback bus 3
MIDI data sampler au — bus 4
fileplayer au au effect bus 5

One advantage to audio processing graphs is teaighal path is laid out in an orderly
fashion. Connections between audio units can beerdadctly or through callbacks. The
remote IO audio unit serves a dual purpose asput and output device. It has an input
scope and and output scope. In the above diagnamshown as two separate audio units
at the beginning and end of the processing chdia.diagram below show effect
processing options for the mic/line input callb&aRkction.

Mic/line input callback effect processing

ring modulator

FFT pass through

STFT pitch shifter

|

input samples pass through output samples

simple delay

low pass filter

convolution filter

Almost any type of processing can be done in daek. The only requirement is that
data is copied to the output buffer, and thatdtse quickly enough to keep up with the
sample rate and the frame rate. If these condigoasot met you will hear unpredictable
sounds, no sounds, or odd zipper like versione@tbunds you expected.

iPad User Interface

audioGraph

mic/line

chamnels 1 E—

frequency 0

ring fit pitch echo Ipf conyv

input fx fx selection

fx control

OFF
quitar loop

drum loop
synth
sampler

OFF
channel fx

OFF
filePlayer

—
[~
) ——
G —
—
—
—

press Play to begin

Play

The user interface is arranged to mirror the siga#th. The ‘Play’ button starts and stops
the audio processing graph.

Core Audio Setup

The original MixerHost application is a great resmusetting up Core Audio programs in
iOS. The underlying structure from MixerHost hae left intact in this project.

The key steps are:
1. Setup the audio session
2. Define and configure audio units and stream forr(egbd’s)

3. Configure and initialize the audio processing graph

The Apple developer documentation does a greavfi@xplaining how this works. I'll
address the confusing aspects of the process.

Setup the Audio Session

The AVAudioSession class configures audio behawmatuding sample rate,
interruption handling, and input device availalilit

This is done in: [setupAudioSession]

Enabling input

By default the audio session is set for output dplstyback). If you are using a mic or
line in device you will need to set the sessiofPiay and Record”

/I Assign the Playback and Record category to the aud io session
NSError *audioSessionError =nil ;
[mySession setCategory . AVAudioSessionCategoryPlayAndRecord
error . &audioSessionError I
if (audioSessionError I=nil) {
NSLog (@'Error setting audio session category.");
}

Detecting input devices and channels

If you are processing input you will want to knoavhmany channels are available and,
in the case of the older iPod-Touch without thdthoimic, whether or not any input
device is available.

1

/I check if inputis available

/I this only really applies to older ipod touch witho ut builtin mic

1

/I There seems to be no graceful way to handle this

1

/I what we do is

1

1 set instance var : inputDevicelsAvailable so app can make decisions
/I based on input availability

1 give the user a message saying input device is not available

1 set the session for Playback only

1

1

1
inputDevicelsAvailable = [mySession inputlsAvailable 1;

if (inputDevicelsAvailable) {

NSLog (@'input device is available");
else {
NSLog (@'input device not available...");
[mySession setCategory . AVAudioSessionCategoryPlayback
error . &audioSessionError 1;
}

In the above example, if no input device is detkthe session in reset to “playback
only” to prevent an error that will occur if thessén is started in “playback and record”
mode with no input device.

Another idiosyncrasy: The warning message to tiee casnnot be displayed until the
View Controller has completed its loading proc&swe set a boolean instance variable:
inputDevicelsAvailable. Then after the loadinggess is complete the alert message is
called in the [viewDidAppear] method of MixerHosg#wController.m.

- (void) viewDidAppear : (BOOL animated {
[super viewDidAppear : animated J;
[[UlApplication sharedApplication] beginReceivingRemoteControlEvents 1;
[self becomeFirstResponder 1;
/I this alert needs to be here , becuase if itsinthe viewDidLoad sequence you “l
/I get the error . “applications are expected to have a root view con troller...”
if (audioObject . inputDevicelsAvailable ==NO) {
UlAlertView *alert = [[UlAlertView alloc] initWithTitle : nil message :@"Mic is not
available. Please terminate the app. Then connect a n input device and restart. Or you can
use the app now without a mic." delegate : self cancelButtonTitle :@"'oK"
otherButtonTitles cnil J;
[alert show ;
[alert release 1;
}
}

The only way | have found to tell whether or noteatternal input device is connected —
like a USB audio interface for example — is to tladl
[currentHardwarelnputNumberOfChannels] method rdfte audio session is started.

/I find out how many input channels are available

NSinteger numberOfChannels = [mySession currentHardwarelnputNumberOfChannels I
NSLog (@'number of channels: %d" , numberOfChannels);
displayNumberOfinputChannels = numberOfChannels ; /I set instance variable

The displayNumberOfinputChannels instance variablesed throughout the program to
determine whether we are dealing with mono or stamput. That is, one channel means
mono — more than one channel means stereo. Ofethissis a shortcut and the ideal
situation would be to provide a menu to let ther esafigure mono, stereo, or
multichannel input as is done in GarageBand onRbd.

Setting sample rate and slice buffer size

As you may have already noticed, iOS devices castuigborn. If you set the sample rate
or the currentBufferDuration in the audio sessymy aren’t guaranteed to get what you
asked for. So it's a good idea to actually find th& actual sample rate and buffer size
after the audio session is started, using:

[currentHardwareSampleRate] and AudioSessionGe&Prg(p.

/I Obtain the actual hardware sample rate and store i t for later use in the audio
processing graph
self . graphSampleRate = [mySession currentHardwareSampleRate B
NSLog (@'Actual sample rate is: %f" , self .graphSampleRate);
/I find out the current buffer duration
/I to calculate duration use . buffersize | samplerate , eg ., / =
/I Obtain the actual buffer duration - this may be necessary to get fft stuff working
properly in passthru
AudioSessionGetProperty (kKAudioSessionProperty_CurrentHardwarelOBufferDurati on, &sss,
¤tBufferDuration);
NSLog (@'Actual current hardware io buffer duration: %f " , currentBufferDuration);

The above example is a classic example of the @hunsit of C and Objective-C that is
Core Audio.

Define Audio Stream Formats (asbd’s)

Core Audio uses the asbd (audio stream basic gésar) structure to set audio formats
on the input and output buses of audio units.

The recommended default settings for each typadibaunit can be found in the Apple
documentation.

The following methods provide examples of how tbasbd’s:
[setupStereoStreamFormat] (fixed point 8.24 (321w interleaved 2 channel)
[setupMonoStreamFormat] (fixed point 8.24 (32)bit)
[setupSIntl6StreamFormat] (Signed 16 bit inte¢f8int16))

This is the [setupStereoStreamFormat] method.

- (void) setupStereoStreamFormat {
/I The AudioUnitSampleType data type is the recommend edtype for sample data in audio
/I units . This obtains the byte size of the type for use in filling in the ASBD
size_t bytesPerSample = sizeof (AudioUnitSampleType);
/I Fill the application audio format struct ' s fields to define a linear PCM
1 stereo , noninterleaved stream at the hardware sample rate
stereoStreamFormat . mFormatID = kAudioFormatLinearPCM
stereoStreamFormat . mFormatFlags = kAudioFormatFlagsAudioUnitCanonical
stereoStreamFormat . mBytesPerPacket = bytesPerSample
stereoStreamFormat . mFramesPerPacket =1
stereoStreamFormat . mBytesPerFrame = bytesPerSample
stereoStreamFormat . mChannelsPerFrame = 2; I indicates stereo

stereoStreamFormat . mBitsPerChannel
stereoStreamFormat . mSampleRate

* bytesPerSample
graphSampleRate

NSLog (@'The stereo stream format:");
[self printASBD . stereoStreamFormat 1;

In the above example, tlh&idioFormatFlagsAudioUnitCanonical constant is used to set flag
bits indicating

» Fixed point 8.24
* Native endian

* Packed

* Non interleaved

If you look at the flag definitions for this format appears at first to be “signed integer”
but in fact there is an additional flag bit (urainsple fraction bits) which makes it a fixed
point format in iOS. It can be confusing. The WABSD] method is helpful for
examining and debugging stream format issues.

Note: AudioUnitSampleType and AudioSampleType arethe same. In iOS, the former
is 8.24 fixed point and the latter is SInt16.

by

Render

(! =% Input element (L") e (1 Ourpu'telement
—_—

Hardwara-imposad Application (“client”)
stream format stream format

Input device asbd’s

Here are some observations about asbd’s on miGranahputs.

You can set the remote 10 input bus (mic) to Sintblong as you are only using one
channel. SInt16 format streams will not work withltiple channels, (stereo). Use the
canonical AudioUnitSampleType (fixed point 8.24)saswn in the above example. You
can always convert samples from one format to amatha callback function. There’'s an
example of this in micLineInCallback().

| have not been able to get a floating point agbadrk on the input bus of the remote 10
unit.

Stick with the canonical AudioUnitSampleType oratdver works.

Audio unit effect asbd’s

Now for something completely different. The asbddadio unit effects is set lgetting
the default asbd setting (which is initializedrfréhe audio unit basic description) and
then setting the sample rate. This is done in:
[configureAndiInitializeAudioProcessingGraph].

/I get default asbd properties of au effect unit
/I this sets up the auEffectStreamFormat asbd

UInt32 asbdSize = sizeof (auEffectStreamFormat);
memset (& auEffectStreamFormat , 0, sizeof (auEffectStreamFormat));
CheckError (AudioUnitGetProperty (auEffectUnit , kAudioUnitProperty_StreamFormat
kAudioUnitScope_Input , 0, &auEffectStreamFormat , &ashdSize),
"Couldn't get aueffectunit ASBD");

/I debug print to find out what ' s actually in this ashd
NSLog (@'The stream format for the effects unit:");

[self printASBD : auEffectStreamFormat IE
auEffectStreamFormat . mSampleRate = graphSampleRate ; /I set sample rate

/I now set this ashd to the effect unit input scope

/I note : if the asbd sample rate is already equal to graphsamp lerate
/I then this next statement is not
/I necessary because we derived the ashd from what it was already set to

CheckError (AudioUnitSetProperty (auEffectUnit , kAudioUnitProperty_StreamFormat
kAudioUnitScope_Input , 0, &auEffectStreamFormat , sizeof (‘auEffectStreamFormat B
"Couldn't set ASBD on effect unit input”);

Note the wrapper function CheckError(). This iseaycool utility by Chris Adamson
that simplifies error checking in Core Audio. Ther€ Audio function is wrapped inside.

By the way in the above example, the effect auditstasbd is set to stereo 32 bit

floating point, non interleaved.

asbd ad infinitum

Working with asbd’s can be frustrating. With so ma@rameters it's easy to set
something wrong.

In general, the asbd’s of connected buses shouichmigor example, if the output bus of
an audio unit effect is connected to the input ofiger, user the same asbd for both.

The same is true with callbacks. For example chléback pulls input data from the
remote IO bus and passes it to a mixer input &esthe same asbd.

The asbd’s on the input and output scope of aquaati audio unit can be different. For
example, various stream formats can be attachedxer input bus channels even though
the mixer output stream format may be completeffedint. The appropriate conversion
is handled automatically within the audio unit.

Helpful Xcode hint: Right-click on any asbd progest constant and select “jump to
definition” to go the code where it's defined.

Configure and initialize the audio processing graph

Most of the Core Audio setup code in this projedoiund in
[configureAndInitializeAudioProcessingGraph]. Thsswhere the audio units are
defined, configured, and connected.

Here’s a rough outline of the steps:

Instantiate and open an audio processing graph
specify audio unit component descriptions for alksiin the graph
add nodes to the graph
Open graph and get the audio unit nodes for thehgra
Configure the remote 10 unit
Configure the Multichannel Mixer unit
a. Specify the number of input buses, output sampks eand maximum
framesperslice
b. Configure each input channel of mixer
I. Set callback structs
ii. Setasbd
7. Configure any other audio unitx, sampleyfileplayer)
8. Make processing graph connections
9. Start the processing graph
10. Configure audio unit parameters
11. Setup other post graph parameters (midi and fijep)a

ogkrwnE

Enabling Input on the RIO audio unit
By default, input is disabled on the remote 10 audhit. Here’s how to make it work.

AudioUnitElement ioUnitInputBus =

/I Enable input for thel /Ounit , which is disabled by default . (Output is
/I enabled by default , sothere ' sno need to explicitly enable it)
UInt32 enablelnput = 1;

AudioUnitSetProperty (
ioUnit ,
kAudioOutputUnitProperty EnablelO ,
kAudioUnitScope_Input
ioUnitinputBus

&enablelnput

sizeof (enablelnput)

The remote 10 audio unit has a split personality.used for connecting to input devices
like the microphone (input scope) and output deyvltes speakers (output scope).

In the above example we’re setting the input bugherinput scope of the remote 10

audio unit.

Connections, callbacks, and the end of the line

Here are a few important considerations for makimgnections in an audio processing
graph.

Connections or Callbacks, not bothif you connect two audio units using a callback
then you should not explicitly connect their nodesig AUGraphConnectNodelnput().

Conversely, you should’'t define a callback on audids that will be connected using
AUGraphConnectNodelnput().

Pass the classWhen setting the *inRefCon struct to pass tolbbaek function, rather
than defining a special struct to pass the datdeteby the callback, its much easier to
pass a reference to the entire class.

In the following example the inputProcRefCon isteetelf’

UInt16 busNumber = 2; /I mic channel on mixer

/I Setup the structure that contains the input render callback
AURenderCallbackStruct inputCallbackStruct ;

inputCallbackStruct . inputProc = micLinelnCallback ; /I 8.24 version
inputCallbackStruct . inputProcRefCon = self
NSLog (@'Registering the render callback - mic/lineln - wit h mixer unit input bus
%u", busNumber);
/I Set a callback for the specified node ' s specified input
result = AUGraphSetNodelnputCallback (
processin gGraph ,
mixerNode
busNumber

&inputCaIIba’ckStruct
)i

if (noErr != result) {[self printErrorMessage . @AUGraphSetNodelnputCallback
mic/lineln” withStatus : result]; return ;}

Inside the callback you will have access to alihef instance variables in the
MixerHostAudio class. This is a huge convenience.

No asbd at the end of the lineTechnically the final audio unit in the procegsgraph is
the output scope of the remote 10 unit. But in pratic terms consider what comes just
before that. In our case it’s an audio unit eftacked on to the mixer output as a master
effect. In any case, the only parameter that neets set is the sample rate. The
processing graph will handle everything else.

NSLog (@'Setting sample rate for au effect unit output scop e");
/I Set the mixer unit ' s output sample rate format . This is the only aspect of the
output stream
/I format that must be explicitly set
result = AudioUnitSetProperty (
auEffectUnit ,
kAudioUnitProper ty_SampleRate
kAudioUnitScope_ Output ,
&graphSampleRate
sizeof (graphSampleRate)
)
if (noErr = result) {[self printErrorMessage ;. @AudioUnitSetProperty (set au effect
unit output stream format)" withStatus @ result]; retun ;}

Communicating with the user interface

If you grew up in the old country you're probablgtrhrilled with the Model-View-
Controller paradigm. But here we are.

Methods in the MixerAudioHost class should not dilecontrol the user interface. This
is the realm of the view controller. But the vieantroller has access to methods and
properties of MixerAudioHost.

Look at the [viewDidLoad] method in MixerHostView@woller.m

- (void) viewDidLoad {
[super viewDidLoad];
MixerHostAudio *newAudioObject = [[MixerHostAudio alloc] init];

self . audioObject = newAudioObject
[newAudioObiject release B

[self registerForAudioObjectNotifications 1;
[self initializeMixerSettingsToUl B

This is the code that gives the view controlleatoess the MixerHostAudio class using
the reference: audioObject. For example,

[audioObject playSynthNote]; invokes the [playSysbte] method from within the view
controller.

From the perspective of the MixerHostAudio clagsmethods in MixerHostAudio need
to communicate with the view controller, they shibsét instance variables which the
view controller can discover.

Timer loop

Here’s an example to illustrate the behavior descriabove. In the micLinelnCallback()
The level of the input signal is measured for eslde of sample data. Then it's saved in
the MixerHostAudio instance variables: displaylipayelleft and
displaylnputLevelRight.

1 get average input volume level for meter display
1
/I (note : there 'savdsp function to do this but it works on float samples

THIS . displaylnputLevellLeft = getMeanVolumeSintl6 (sampleBufferLeft , inNumberFrames);
/I assign to instance variable for display
if (isStereo) {
THIS . displaylnputLevelRight = getMeanVolumeSintl6 (sampleBufferRight
inNumberFrames); // assign to instance variable for display
}

Now back to the view controller, in [initializeMix8ettingsToUl], we start up a timer.

[NSTimer scheduledTimerWithTimelnterval

target : self

selector :@selector (myMethod:)
userinfo : audioObject

repeats . YES];

The timer invokes a callback called [myMethod] gv&00 milliseconds.

Inside [myMethod] the view controller discovers reut values of the MixerHostAudio
instance variables and displays them as progregsators on the screen. They actually
look like level meters if you're sleepy.

/I This is the timer callback method
/I sorry about the name

/I it checks the value of instance variables in Mixer HostAudio
/I and displays them at regular intervals

/I in the crazy convoluted world of objective -C
/I userinfo conveniently points to AudioObject

(void) myMethod : (NSTimer *) timer {

/I float z = [[timer userinfo] frequency ;
/I UInt32y = [[timer userinfo] micLevel T;
int numChannels

micFregDisplay .text = [NSString stringWithFormat @"%d",
[[timer userinfo] displaylnputFrequency 1;

numChannels = [[timer userinfo] displayNumberOfinputChannels IE
numberOflnputChannelsDisplay .text = [NSString stringWithFormat :@"%d" , numChannels];
inputLevelDisplayLeft . progress = [[timer userinfo] displaylnputLevellLeft 1;
if (numChannels == 1) { /I if mono duplicate left channel meter
inputLevelDisplayRight . progress = [[timer userinfo] displaylnputLevelLeft IE
else if (numChannels == 2) { /I otherwise use separate data for
right channel
inputLevelDisplayRight . progress = [[timer userinfo] displaylnputLevelRight I
/I note : we' re asuuming that we "Il only have or channels (mono or stereo)
/I If zero input channels the program would have exited from AVSession init
/I if more than two , we actually need to do some work to find out what they are and
/I provide a Ul to configure them
}

This form of communication is like leaving notes family members rather than talking
to them directly.

Handling events and interruptions

What happens when you unplug a headset? The audie®oangeListenerCallback()
handles this type of event. This code from the Mibast application has been left intact.

Notes on Audio Units

Effects Units
Audio unit effects are new in iOS 5.

Audio unit effects are probably the easiest typauafio unit to configure.
Specify the audio unit component description

Add the unit to the processing graph

Set the asbd

Connect the processing graph node

After starting the processing graph, set effecapeaters

Al S

As of iOS 5.0.1 there is a bug in the bypass paranfier some of the audio unit effects.
After the first time the effect is bypassed it doéstart back up again when it is un-
bypassed. This happens with the distortion andribeefects. The lowpass and highpass
filter effects, used in this project, are workingperly.

MIDI Sampler Unit
(under construction)

The MIDI Sampler audio unit is new to iOS 5. Thenpéer plays AUpreset files. To
make an AUpreset file, use the AU Lab applicatoeated in:

/Developer/Application/Audio/AU Lab

The MIDI Sampler code in this project was adaptedifthe Apple LoadPresetDemo and
Chris Adamson’s VTMAUGraphDemo.

MIDI device connections

I have not tested MIDI hardware interfaces with i@ | have successfully used an app
called touchMIDI. touchMIDI running in the backgroicreates a MIDI via WIFI
connection to the iPad.

This, for example, allows you to play the MIDI sdergn this program, from a MIDI
keyboard connected to a Macbook — or from any apfiins running in Mac OS which
generates MIDI data, like Garageband, Max/MSP, ldet#on Live.

Fileplayer Unit
(under construction)

The Fileplayer audio unit is new to iOS 5.

The Fileplayer code in this project was adaptethffehris Adamson’s
VTMAUGraphDemo.

Audio callbacks

Audio callbacks are where the magic happens. Amoazallback pulls sample data into
the input bus of an audio unit. It all happens Viast. For example, at a sample rate of
44.1 KHz and a slice size of 1024 frames, the aakifunction runs 43 times per second.
The prime directive of an audio callback functiena fill its output buffers with sample
data.

What can you accomplish in 23 milliseconds? Asrihs out, quite a lot. For example,
effects processing, analysis, pitch shifting, ahdring. All these can be accomplished in
real time on an iOS device.

We will look at two callbacks:

1. the mic/line input callback which pulls data fronetoutput bus of the input scope
of the remote 10 audio unit into an input bus & thultichannel mixer.

2. the synth callback which generates sample datag#tatpulled into an input bus
of the multichannel mixer

Things to avoid in audio callbacks:

* Anything that takes a lot of time
o Allocating buffers
o Objective-C
0 User interface processing
* Blocking processes
o User input
0 Reading files

Mic/Line input callback

The mic/line input callback gets data by “rendetimgoming audio from the remote 10
audio unit — which is directly connected to a mpirone or input device.

*inRefCon

The *inRefCon argument to the callback functiom igointer to a scope or context which
may contain data that is needed by the callbackc&avenience this is set to the
MixerHostAudio class — making available all thetarse variables of the class.

/I scope reference that allows access to everything i n MixerHostAudio class

MixerHostAudio *THIS = (MixerHostAudio *) inRefCon ;

For example, in the callback, THIS.isStereo woetlier to the MixerHostAudio instance
variable isStereo.

Audio rendering

Here is an example of rendering data from the rertf@taudio unit inside the callback
function. It uses AudioUnitRender().

/I copy all the input samples to the callback buffer - after this point we could bail and
have a pass through

renderErr = AudioUnitRender (rioUnit , ioActionFlags
inTimeStamp , busl , inNumberFrames , ioData);
if (renderErr < 0) {
return renderErr
}

At this point, if you wanted to pass audio througithout additional processing, the
callback could return, having completed its mission

Sample type conversion

As mentioned in the section on asbd’s, the defanitple format for iOS input devices is
8.24 fixed point. There are only a few kids in tresghborhood who understand fixed
point math. A typical signal processing textbodKk present examples in floating point
or integer. There are examples of both in thisqubj

So after rendering the sample data the next pyierito convert the data. We are
converting to SInt16 (Signed 16 bit integer) formats a first step and then later
converting to floating point if necessary.

Here are the functions to convert fixed point 824&Int16 and back again.

M T 1
/I convert sample vector from fixed point to SInt16
void fixedPointToSInt16 (SInt32 * source , SIntlé * target , intlength) {
inti
for (i = 0;i <length ;i ++) {
target [i] = (SIntl6) (source [i] >> 9);
}

}

T T 1
/I convert sample vector from SInt16 to fixed point
void SInt16ToFixedPoint (SIntl6 * source , SInt32 * target , intlength) {

inti

for (i = 0;i <length ;i ++) {
target [i] = (SInt32) (source [i] << 9);
if (source [i] <
target [i] |= OxFFO00000 ;

else {
target [i] &= OxO0FFFFFF;
}

To convert fixed point to integer, shift the dathi® to the right. To go from integer to
fixed point, shift the data 9 bits to the left aadend the sign bit by masking. Some
resolution is lost going from 24 to 16 bits busitiot critical for a typical iOS application.

Stereo data and Interleaving

The default for sample data in iIOS is non-intereghvl hat is, each channel is stored in a
contiguous block. Here is an example of how to sedeft and right channel data. In fact
it's the fixed point to SInt16 conversion descrilzabve.

/I convert to SInt16

inSamplesLeft
fixedPointToSInt16

if (isStereo
inSamplesRight

) |

= (AudioUnitSampleType
(inSamplesLeft

*) ioData

, sampleBufferLeft

-> mBuffers [0]. mData; // left channel
, inNumberFrames);

= (AudioUnitSampleType

*) ioData

-> mBuffers [1]. mData; // right

channel
fixedPointToSInt16
}

(inSamplesRight , sampleBufferRight , inNumberFrames);

After rendering, sample data is stored in a buféerIn this case ioData-
>mBuffers[0].mdata is the left channel. For examp®ata->mBuffers[0].mdata[3]
would be the fourth sample in the left channel bufGot that?

Stereo effects processing

Without optimization some of the effects work okstereo on a classic iPod-Touch, but
most exhibited disturbing zippering sounds as #iback churned and labored to meet
its prime directive. For now stereo channel daturmmed and processed in a single
channel.

Signal processing in audio callbacks

This section describes the signal processing exaswphich are attached to the mic/line
input callback. To me this is the most excitingtfgdrthe project. It was around 4 in the
morning when | finally debugged the pitch-shiftiogde and heard a Darth Vader version
of my voice in the earbuds. Sadly the people trymgleep, in other rooms of the house,
were only hearing an insomniac talking to his iPod.

Ring Modulator

A ring modulator multiplies two input signals inetime domain. The result is a signal
which contains the sum and difference of the irgagnals. In this example the mic/line
input is multiplied by a sine wave. The frequen€yhe sine wave is set by the fx control
slider and varies from .00001 Hz to 4000 Hz.

Here is the ringMod() function. It is called fratme mic/line callback function.

M

/I ring modulator effect - for SIntl6 samples

1

/I called from callback function that passes in a slice of frames
1

void ringMod (

void *inRefCon /I scope (MixerHostAudio)
UInt32 inNumberFrames , /I number of frames in this slice
SInt16 *sampleBuffer) { /I frames (sample data)
/I scope reference that allows access to everything i n MixerHostAudio class

MixerHostAudio * THIS = (MixerHostAudio *) inRefCon ;

UInt32 frameNumber ; /I current frame number for looping

float theta ; /I for frequency calculation

static float phase = 0; /I for frequency calculation

float freq ; Il etc .,

AudioSampleTyp: * outSamples ; /I convenience pointer to result samples

outSamples = (AudioSampleType *) sampleBuffer ; // pointer to samples

freq = (THIS. micFxControl *) + ; Il getfreq from fx control slider
1 prevents divide by

/I loop through the samples

for (frameNumber = 0; frameNumber < inNumberFrames ; ++frameNumber) {
theta =phase * M_PI * 2; /I convert to radians
outSamples [frameNumber] = (AudioSampleType) (sin (theta) *

outSamples [frameNumber]);

phase += / (THIS. graphSampleRate / freq); /I increment phase
if (phase >) { /I phase goes from ->
phase -= ;
}

A ring modulator is a simple effect to programillitstrates the basic processing loop
which iterates through a slice of frames generatungput samples from input samples.

When generating signals one sample at a time thelsaate is critical. For example, if
the sample rate is 44.1 KHz, each iteration ofpifeeessing loop will generate 1/44100th
of the cycle.

In this example, and in the synthesizer callbackcalculate the sample value from the
instantaneous phase value. In this example, plasefrom 0->1 in 1/44100 increments
and is converted to radians for the sin() function.

Keep in mind that we’re working with Integer sangpl&he results of any calculations
should be cast to SInt16 format. Fun fact: In i@8dioSampleType) is Sint16. But
(AudioUnitSampleType) is fixed point 8.24.

One final observation - after each invocation ngMod() the phase value needs to be
preserved for the next slice of sample data. Thisandled by a static local variable.

Simple delay

The simple delay (echo) example mixes the currgmiti signal with the input signal
from some point in the past. The fx control slidetermines the length of the delay.

There are two extra steps required prior to thegssing loop. Current sample data needs
to be saved. And the delayed data needs to bevetti You'll need to save enough
sample data to equal the amount of the delay. ¥ample, if the delay is one second at a
sample rate of 44.1 KHz, the delay buffer shoulldi lad least 44100 samples. This delay
line is implemented with a ring buffer.

We’'re using an adaptation of the TPCircularBuffiass written by Michael Tyson
https://github.com/michaeltyson/TPCircularBuffer

A ring buffer is typically separates the processvifing and reading data. The write
pointer or “head” is always kept ahead of the ngaidt (“tail”) by a sufficient amount to
allow for timing differences between reading andting.

Without a ring buffer you would need a buffer serpial to the maximum possible
amount of data that would be processed. In the alssal time audio processing, the
buffer would need to be infinitely large. So isense ring buffers are a computer science
version of recycling.

Fetchmost
recentData

AddnewData

Ring Buffer

Release okl Data

With a delay line the tail position is determingddubtracting the delay length from the
head. Also. locking isn’t needed since the writd sead processes happen in the same
thread.

The amount of delay is determined by the distarfi¢keotail from the head. Our
adaptation of TPCircularBuffer allows re-calculatiof the tail based on the amount of
delay.

Here is the code that writes data into the ringdyuf

int32_t tail
SInt16 * targetBuffer
Sint16 * buffer

int sampleCount =

int samplesToCopy
int32_t length

/I tail of ring buffer

, *sourceBuffer

i

= inNumberFrames

(read pointer)

/I convenience pointers to sample data

number of samples processed in ring buffer
total number of samples to process
length of ring buffer

int32_t delayLength Y ; /I size of delay in samples
int delaySlices /' number of slices to delay by
/I Put audio into circular delay buffer

/I write incoming samples into the ring at the curren
/I head is incremented by inNumberFrames

t head position

uffer because we don ' tcare
- because we ' re going to manually

ch time this function gets

/I The logic is a bit different than usual circular b

/I whether the head catches up to the tail

/I set the tail position based on the delay length ea

/I called
samplesToCopy = inNumberFrames
sourceBuffer = sampleBuffer

length = TPCircularBufferLength ’ (& delayBufferRecord);
/I printf ("length: %d\n" , length);

while (samplesToCopy > 0) {

sampleCount = MIN (samplesToCopy , length
TPCircularBufferHead (& delayBufferRecord));
if (sampleCount == 0) {
break ;
buffer = delayBuffer + TPCircularBufferHead (& delayBufferRecord);
memcpy (buffer , sourceBuffer , sampleCount *sizeof (SInt16)); // actual copy
sourceBuffer += sampleCount
samplesToCopy -= sampleCount

TPCircularBufferProduceAnywhere , sampleCount); /I this

increments head

}

(& delayBufferRecord

It looks more complicated that it is. With ring bers you can't just copy in a chunk of
data. If the head is closer to the physical entth@fbuffer than the length of the incoming
data, then the copy must be done in 2 steps. Thainéng data gets copied to the
physical start of the buffer. If this is confusinigy; sketching some diagrams of various
data sizes and head positions. The difficultyiliesnposing a circular construct on a
finite linear buffer.

Here’s the code to retrieve the data. The posiidhe tail (read pointer) is determined
by the delay length which the user controls with fhislider. Copying data out of the
ring buffer involves the same two step processeasribed above.

/I Now we need to calculate where to put the tail - note this will probably blow

/I up if youdon ' tmake the circular buffer big enough for the delay

delaySlices = (int) (THIS. micFxControl *);
delayLength = delaySlices * inNumberFrames ; /I number of slices do delay by
/I printf ("delayLength: %d\n" , delayLength);
tail = TPCircularBufferHead (& delayBufferRecord) - delayLength
if (tal < 0) {
tail = length +tail
}
TPCircularBufferSetTailAnywhere (& delayBufferRecord , tail);
targetBuffer = tempDelayBuffer ; /I tail data will get copied into temporary buffer
samplesToCopy = inNumberFrames ;
/I Pull audio from playthrough buffer , in contiguous chunks
/I this is the tricky part of the ring buffer where w e need to break the circular
/I illusion and do linear housekeeping . If we' re within of the physical
/I end of buffer , then copy out the samples in steps

while (samplesToCopy >) {

sampleCount = MIN (samplesToCopy , length -
TPCircularBufferTail (& delayBufferRecord));
if (sampleCount ==
break ;

/I set pointer based on location of the tail

buffer = delayBuffer + TPCircularBufferTail (& delayBufferRecord);

memcpy (targetBuffer , buffer | sampleCount *sizeof (SIntl16)); // actual copy

targetBuffer += sampleCount ; /I move up target pointer

samplesToCopy -= sampleCount ; /I keep track of what ' s already written

TPCircularBufferConsumeAnywhere (& delayBufferRecord , sampleCount); /I this
increments tail

}

At this point we have a slice of delayed samplebaslice of current samples. They are
mixed together by scaling and adding.

/I convenience pointers for looping
AudioSampleType * outSamples ;
outSamples = (AudioSampleType *) sampleBuffer

/I mix the delay buffer with the input buffer

/I so here the ratio is * input signal
/I and * delayed signal

for (i = 0;i <inNumberFrames ;i ++) {

outSamples [i] = (* outSamples [i]) + (* tempDelayBuffer [iD);
}

There are simpler ways to implement a delay ling. y®u will probably find the ring
buffer a useful tool for other audio processindgsa$Ve will use the same algorithm in
the next two sections to implement digital filters

Recursive moving average (lowpass) filter

This example illustrates a simple moving averaljerfwith a variable number of points
(3->101) determined by the fx control slider. Irasmg the number of points is roughly
equivalent to lowering the cutoff frequency.

x[78] + x[79] = x[B0] + x[81] + x[82]
5

y[80] =

The filter algorithm is adapted from Steven W. 3rsitbook “The Scientist and
Engineers Guide to Digital Signal Processing” ala@ free, online at
http://www.dspguide.com

The algorithm is found in table 15-2.

A recursive filter runs faster because it usegdiselts of previously calculated samples
to calculate new ones.

This algorithm requires a buffer of input samplgsead to the size of the input signal plus
the size of the filter minus 1, which, by the wesythe requirement for any digital filter
based on convolution.

So if our callback function needs 1024 samplesthadilter size is 101 we’ll need a
buffer with at least 1034 samples. To get the esaraples we’ll use a ring buffer as
described above in the Simple Delay.

One other housekeeping task: We need to convengleatata from Sint16 to floating
point. The Accelerate vDSP framework provides fiong to do this:

/I Convertintl6ToFloat

VvDSP_Vflt16 ((SIntl6 *) sampleBuffer , stride , (float *) analysisBuffer , stride
bufferCapacity);

The stride factor relates to interleaving. In ttase the data is non-interleaved so the
stride = 1. There is an excellent discussion adistfactors in the Apple iOS developer
library: “vDSP programming guide”.

The size of the filter (and the position of the taithe ring buffer) is determined by the
position of the fx control slider.

Here is the code to run the filter.

/I ok now we have enough samples in the temp delay bu ffer to actually run the

Il filter . For example , if slice sizeis and filterLength is - then we
/I should have samples in the tempDelayBuffer

signalBuffer = tempCircularFilterBuffer

resultBuffer = THIS . outputBuffer

acc = 0; /I accumulator - findy [50] by averaging points x [0] tox []
for (i = 0; i <filterLength i+) {
acc += signalBuffer [i];
}

resultBuffer [0] = (float) acc [/ filterLength

/I recursive moving average filter

middle = (filterLength - 1)
for (i =middle + 1; i < (inNumberFrames +middle) ;i ++) {
acc =acc + signalBuffer [i +middle] - signalBuffer [i - (middle + 1)];
resultBuffer [i - middle] = (float) acc / filterLength
}

All that remains is to convert the data back tatB¥rformat — which is done using
another vDSP function.

/I now convert from float to Sint16

VvDSP_Vfixrl6 ((float *) resultBuffer , stride , (SIntl6 *) sampleBuffer , stride
bufferCapacity);

Low Pass convolution filter

This example is a low pass windowed-sinc filterhwatvariable cutoff frequency
implemented by convolution.

e I I B i — 40 [T T T T T 1
a. Frequency fesponse | gn__l b. Freguency response (GB) !
a
2 1.00 @_?0]r \l.
- i, L1
£ 3 [)
.30 .%'50 l L
-80 |/
o i y
0.00 -120 \N‘ v
Q.15 02 0.25 1500 2000 2500
Frequency (discrets) Freguency (hertz)
FIGUEE 16-6

Ezample of a windowed-sinc band-pass filter. This filter was designed for a sampling rate of 10 kHz. When
referenced to the analog signal, the center frequency of the passband is at 2 kHz, the passband is 80 hertz, and the
transition bands are 50 hertz. The windowed-sinc uses 801 points in the filter kernel to achieve this roll-off, and a
Blackman window for good stopband attenmation. Figure (};) shows the resulting frequency response on a linear
scale, while (b) shows it in decibels. The fregquency axis in (a) is expressed as a fraction of the sampling frequency,
while (b) is expressed in terms of the analog signal before digiization.

This algorithm is adapted from Steven W. Smith’slbtThe Scientist and Engineers
Guide to Digital Signal Processing”, table 16-laitable athttp://www.dspguide.com

The filter is calculated in real time based onchtoff frequency set by fx control slider.
Here is the algorithm. It uses a Hamming windowahlis calculated at the same time as

the filter.
T T i
1
I point windowed sinc lowpass filter from http /I www dspguide . com/
/I table -
1
void lowPassWindowedSincFilter (float *puf , float fc) {
/I re -calculate point lowpass filter kernel
inti ;
intm =
float sum =
for (i = 0;i Do) |
if (i -m/ ==0) {
buf [i] =2 *MPI *fc ;
else {
buf [i] =sin (2 *M_PI *fc * (i -m/ 2) [/ (i -m/ 2)
buf [1] =buf [i] * (- *cos (2 *M_PlI *i [/ m))
}
/I normalize for unity gain at dc
for (i = i< i+) |
sum =sum +buf [i];
}
for (i = i< i+) {
buf [i] =buf [i] / sum;
}

Here is the implementation in convolutionFilter():

/I get mix fx control for cutoff freq (fc)
fc = (THIS. micFxControl *) +
/I make filter with this fc

lowPassWindowedSincFilter (filterBuffer , fc);

The cutoff frequency .18 is expressed as a fraafdhe Nyquist frequency (sample rate
/ 2). At 44.1Khz the slider range is 22 Hz to 3%¥0

Like the moving average filter, the convolutioridil also requires floating point
conversion and a ring buffer. The tail of the ringfer is positioned 1124 samples
behind the head to accommodate a 1024 sampleo§lgignal data and a 101 point filter
size.

The Accelerate vDSP framework provides a converiendtion, vDSP_conv(), to
perform convolution and correlation. Here is thdeto run the filter:

/I ok now we have enough samples in the temp delay bu ffer to actually run the
Il filter . For example , if slice sizeis and filterLength is - then we
/I should have samples in the tempDelayBuffer

/I do convolution

filterStride = -1; /I convolution
vDSP_conv (signalBuffer , stride , filterBuffer + filterLength - 1, filterStride
resultBuffer , stride , resultLength , filterLength);

The final step is to convert the sample vector fftrating point to Sint16 format using
the same method as with the moving average filter.

This concludes our excursion through the time damai

FFT pass through

The fast Fourier transform (fft) converts a timerdon signal into the frequency domain.
This example illustrates a forward and inversei$ing the Accelerate vDSP framework.

The “vDSP programming guide” from the iOS develdjgaary is an excellent resource.
Sample code is included in the guide:

The code for this example is in fftPassThrough().

Here is an outline of the steps involved:

Prior to the running the AU graph:
Allocate buffers and run vDSP_create_fftsetup()
Inside the callback function:

» Convert SInt16 sample vector to floating point gstDSP_ vflt16()
» Transform real vector into a split complex arrajngsyDSP_ctoz()
* Run the forward fft using vDSP_fft_zrip()

» Convert the split complex vector to a complex il@@ved vector for analysis

using vDSP_ztoc()
» Perform analysis using a vector processing loop
* Run the inverse fft using vDSP_fft_zrip()
» Scale the results using vDSP_vsmul()

» Convert the split complex vector back to a compiegrleaved vector using

vDSP_ztoc()
» Convert floating point format samples to Sint1éngs¥DSP_ vfixr16()

Before your mind glazes over, realize that moghefprocessing involves format

conversion of one sort or another. Let’'s brealoivd.

The initial setup is done prior to launching theliayprocessing graph in [fftSetup]

M
/I Setup FFT - structures needed by vdsp functions
I
- (void) FFTSetup {
/I 1 ' m going to just convert everything to
/I on the simulator the callback gets frames even if you set the buffer to
so this is a temp workaround in our efforts
/I to make the fft buffer = the callback buffer

/I for smb it doesn ' t matter if frame size is bigger than callback buffer

UInt32 maxFrames = ; /I fit size

/I setup input and output buffers to equal max frame size
dataBuffer = (void *) malloc (maxFrames * sizeof (SInt16));
outputBuffer = (float *) malloc (maxFrames *sizeof (float));
analysisBuffer = (float *) malloc (maxFrames *sizeof (float));

/I set the init stuff for fft based on number of frames

fftLog2n =log2f (maxFrames); /I log base2 of max number of frames , eg .,

fftN = << fftLog2n ; /I actual max number of frames , g .,
what a silly way to compute it

fftNOver2 = maxFrames / 2; /I half fft size
fftBufferCapacity = maxFrames ; /I yet another way of expressing fft size
fftindex = 0; /I index for reading frame data in callback

for

Il split complex number buffer
fftA .realp = (float *) malloc (fftNOver2 * sizeof (float)); Il
fftA .imagp = (float *) malloc (fftNOver2 * sizeof (float)); 1

/I zero return indicates an error setting up internal buffers

fftSetup = vDSP_create_fftsetup (fftlog2n , FFT_RADIX2);
if (fftSetup == (FFTSetup) 0) {
NSLog (@'Error - unable to allocate FFT setup buffers");

Note that fftSetup is an instance variable which @ passed as an argument to the fft
function. fftSetup is a pointer to predefined wegarrays (twiddle factors) which boost
performance of the fft at runtime.

The important considerations in the setup are

1. Set the fft size (N) to the largest size fft thatiylan to use
2. Preallocate any buffers that will be used insidgedallback

Inside the callback, the fft function needs a sawgictor in a split complex format.
Please refer the vDSP programming guide (mentiabede) for details. Suffice to say
there is a standard procedure for converting vedtoand out of this format. Here is the
code from fftPassThrough() to do format conversiod run the forward fft:

Vi Fkkkkkkkkkkxkkk FRET riridkidkdonk

/I convert Sint16 to floating point

vDSP_Vflt16 ((SIntl6 *) dataBuffer , stride , (float *) outputBuffer , stride
bufferCapacity);

/I Look at the real signal as an interleaved complex vector by casting it
/I Then call the transformation function vDSP_ctoz to get a split complex
/I vector , which for areal signal , divides into an even - odd configuration
I
vDSP_ctoz ((COMPLEX outputBuffer , 2, &A, 1, nOver2);

/I Carry out a Forward FFT transform

vDSP_fft_zrip (fftSetup , &A, stride , log2n , FFT_FORWARR

At this point the frequency domain data is storethe split complex vector: A. In this
example we’ll find the frequency of the input sigbg looking for the bin with the
greatest amplitude. The first step is to convestdplit complex vector back to an
interleaved complex vector. Then we can loop thhatlg vector to analyze the
frequency domain samples.

Il The output signal is now in a split complex form . Use the vDSP_ztoc to get
/I an interleaved complex vector

vDSP_ztoc (&A, 1, (COMPLEX*) analysisBuffer , 2, nOver2);

/I for display purposes

/I Determine the dominant frequency by taking the mag nitude squared and
/I saving the bin which it resides in . Thisisn 't precise and doesn "t
/I necessary get the "fundamental” frequency , but its quick and sort of works
/I note there are vdsp functions to do the amplitude calcs

float dominantFrequency =

int bin = -1;
for (inti =0; i <n; i +=2) {
float curFreq = MagnitudeSquared (analysisBuffer [i], analysisBuffer [i+1]);
if (curFreq > dominantFrequency) {
dominantFrequency = curFreq
bin = (i+1)/
}
}
dominantFrequency =bin *(THIS. graphSampleRate / bufferCapacity);
/I printf ("Dominant frequency: %f \n" , dominantFrequency);
THIS . displaylnputFrequency = (int) dominantFrequency ; /I set instance variable

with detected frequency

The interleaved complex vector is in the format:

real = bufferf[i]
imaginary = buffer[i + 1]

from O to N/2

MagnitudeSquared() calculates the square of theniualg ((re * re) + (im * im)). To get
the actual magnitude you would take the squareabtite result. But we’re in kind of a
hurry. So the assumption is that the bin with theatest “magnitude squared” value

probably represents the fundamental frequency. Ayt is the “dominant” frequency.

The result of the calculation is stored in theanse variable: displaylnputFrequency
which will be discovered by the view controller.

In the next section we’ll explore a more accurated(costlier) method of pitch detection.

The final step here is to reverse the processs lbettktrack to the point of the forward
fft. The code to undo the fft is almost a mirroraige of the steps leading up to the
forward transform, except that after the inveraasform, the results need to be scaled
back to the original level. Here’s the code:

/I Carry out an inverse FFT transform
vDSP_fft_zrip (fftSetup , &A, stride , log2n , FFT_INVERSE);

/I scale it

float scale = (float) / (2 *n);
vDSP_vsmul (Arealp , 1, &scale , A.realp , 1, nOver2),

vDSP_vsmul (A imagp, 1, &scale , A.imagp, 1, nOver2),
/I convert from split complex to complex interleaved
vDSP_ztoc (&A, 1, (COMPLEX*) outputBuffer , 2, nOver2);

/' now convert from float to Sint16

vDSP_Vfixrl6 ((float *) outputBuffer , stride , (SIntl6 *) sampleBuffer , stride
bufferCapacity);

Had we wanted to modify the samples while in tlegfrency domain — for example,
inside the processing loop where we calculatedszaqy, we would have used
vDSP_ctoz() to convert back to a split Complex sebefore performing the inverse fft.
We’'ll see an example of that in the next section.

If all this seems overwhelming, try using the cadea cookbook. When you cook enough
pots of Chili it suddenly makes sense.

STFT, pitch shifting and detection

The short time Fourier transform combined with ghasalysis gives a more precise
picture of frequency, and can be used to perfoattmme pitch shifting.

The code in this example is adapted from an exaedigicle and sample code by Stephan
M. Bernsee from DSP dimension. Please read tideaiftyou want to understand how
this code works.

http://www.dspdimension.com/admin/pitch-shiftingagsthe-ft/

The adaptation of the code involved:
» Formatting signal vectors (as described in thea§8hrough example above)

* Replacing fft functions with vDSP fft functions
» Saving frequency analysis data in a MixerHostAudgiance variable for display

First lets look at the wrapper for the STFT codétiRitchShift().

/I Convertintl6ToFloat

VvDSP_Vflt16 ((SIntl6 *) sampleBuffer , stride , (float *) analysisBuffer , stride
bufferCapacity)

/I run the pitch shift

/I scale the fx control -> 1 to range of pitchShift ->
pitchShift = (THIS. micFxControl *) +
/I osamp should be at least , but at this time my ipod touch gets very unhappy w ith

/I anything greater than

osamp = 4;
fftSize = ; /I this seems to work in real time since we are actua lly doing
the fft on smaller windows

smb2PitchShift (pitchShift , (long) inNumberFrames ,
fftSize , osamp , (float) THIS . graphSampleRate ,
(float *) analysisBuffer , (float *) outputBuffer ,
fftSetup , &frequency);

/I display detected pitch

THIS . displaylnputFrequency = (int) frequency ;

/I very very cool effect but lets skip it temporarily
/I THIS .sinFreq =THIS . frequency ; /I set synth frequency to the pitch detected
by microphone

/I now convert from float to Sint16

vDSP_Vfixrl6 ((float *) outputBuffer , stride , (SIntl6 *) sampleBuffer , stride
bufferCapacity);

The sample vector is converted from Sint16 to ft@ppoint. The pitch shift factor is set
by the fx control slider. Then everything gets jpalssito smb2PitchShift().

The osamp variable specifies the overlap or ovepiamfactor. This value should be a
power of 2 and should be at least four to prodeesenably accurate pitch shifting.
Higher numbers work better but require more praogsteme. There will be a point of
diminishing returns. There will also be a point wehthe callback can’t keep up.

Here are the original comments in the source comta Stephan M. Bernsee.

NAME smbPitchShift . cpp

VERSION:

HOME URL: http :// www dspdimension . com
KNOWN BUGS none

SYNOPSIS: Routine for doing pitch shifting while maintaining
duration using the Short Time Fourier Transform .

L T

DESCRIPTION: The routine takes a pitchShift factor value which is between
(one octave down) and (one octaveup). A value of exactly does not change

* the pitch . numSampsToProcess tells the routine how many sampl es in indata [

* numSampsToProcess - 1] should be pitch shifted and moved to outdata [0 ..

* numSampsToProcess - 1]. The two buffers can be identical (ie . it can process the

* datain - place). fftframeSize defines the FFT frame size used for the

* processing . Typical values are , and It may be any value <=

* MAX_FRAME_LENGTH but it MUST be a power of osamp is the STFT

* oversampling factor which also determines the over lap between adjacent STFT

* frames . It should at least be for moderate scaling ratios . Avalue of is
* recommended for best quality . sampleRate takes the sample rate for the signal

* in unit Hz , ie . for kHz audio . The data passed to the routine in

* indata [] should be in the range [- ,), which is also the output range

* for thedata , make sure you scale the data accordingly (for bit signed integers
* you would have to divide (and multiply) by).

It may be instructive to compare the original cedtn the modified version in
smb2PitchShift.m to see how the Accelerate vDSFtfons were incorporated. There is
really not much difference in the use of the fitdtions between this example and the
fftPassThrough code. But the code here is more toatpd and again | would
recommend reading the article for a full understamof STFT and pitch detection using
phase change.

Synthesizer Callback

The synthesizer callback generates a sine waveanmihlitude controlled by an envelope
generator. The envelope is triggered by pressimgti@n in the user interface.

The code for generating a sine wave is also digcuissthe Ring Modulator section.

The synthesizer callback differs from the othelozadks in this project, in that it does not
process input samples from a source. It generateplss.

The asbd for the callback is SInt16 format — eliaiimg the need to convert from fixed
point 8.24 and back again.

The callback function is synthRenderCallback()

M

/I synth callback - generates a sine wave with

/i

Il freq = MixerHost . sinFreq

/I phase = MixerHost . sinPhase

/I note on = MixerHost . synthNoteOn

/i

/I its a simple example of a synthesizer sound gener ator

I

static OSStatus synthRenderCallback (
void * inRefCon
AudioUnitRenderA ctionFlags * joActionFlags
const AudioTimeS tamp * inTimeStamp
Uint32 inBusNumber
Ulnt32 inNumberFrames

AudioBufferList * ioData) {

MixerHostAudio * THIS = (MixerHostAudio *) inRefCon ; // scope reference that allows
access to everything in MixerHostAudio class

float freq =THIS . sinFreq ; /I get frequency data from instance variables
float phase =THIS . sinPhase ;
float sinSignal ; 1
float envelope ; /I scaling factor from envelope generator ->
/I NSLog (@'inside callback - freq: %f phase: %f" , freq , phase);
double phaselncrement = *M_PI *freq / THIS . graphSampleRate ; // phase change per
sample
AudioSampleType *outSamples ;
outSamples = (AudioSampleType *) ioData ->mBuffers [0]. mData;
/I if anoteisn ' t being triggered just fill the frames with zeroes and bail
/I interesting note . when we didn ' t zero out the buffer , the microphone was
/I somehow activated on the synth channel .. weird ???
I
/I synth note triggering is handled by envelope gener ator now but | left above comment
to illustrate
/I what can happen if your callback doesn " tfill its output data buffers
/*
if (noteOn ==NO) {
memset (outSamples , 0, inNumberFrames * sizeof (SInt16));
return noErr ;
}
*/
/I build a sine wave (not a teddy bear)
for (UInt32 frameNumber = 0; frameNumber < inNumberFrames ; ++frameNumber) {
sinSignal =sin (phase); // if we were using float samples this would be the valu
/I scale to half of maximum volume level for integer samples
/I and use envelope value to determine instantaneous level
/I envelope = ;
envelope = getSynthEnvelope (inRefCon); /I envelope ranges from ->
outSamples [frameNumber]| = (SInt16) (((sinSignal * f) / 2) * envelope);
phase =phase + phaselncrement ; // increment phase
if (phase >= (2 * M_Pl *freq)) { /I phase wraps around every cycle
phase =phase - (2 * M_PlI *freq);
}
}
THIS . sinPhase = phase ; /I save for nexttime this callback is invoked

return noErr ;

Frequency, phase, and noteOn data is acquiredstance variables.

The sine wave is generated in steps based onitiy@esaate. At 44.1 KHz each sample
represents 1/4418@f a cycle. Each sample value is calculated bythéunction
operating on a phase value which iterates througjtke from 0->1 (or 0->2 Pl radians)
split into 44100 steps. The phase value is savat instance variable after processing
each slice. It could also have been preservedtate variable, as was done in the ring
modulator.

Envelope Generator

The envelope returns a scaling factor from 0->i ttalculated for each sample and
multiplied by the sine wave data. Here is the dodé¢he envelope generator. It is an AR
(attack release) generator implemented as a Bidtie machine.

/I simple AR envelope generator for synth note

I

/I for now, attack and release value params hardcoded in this function
1

#define ENV_OFF
#define ENV_ATTACK
#define ENV_RELEASE

float getSynthEnvelope (void * inRefCon) {
MixerHostAudio * THIS = (MixerHostAudio *) inRefCon ; // access to mixerHostAudio scope

static int state = ENV_OFF; /I current state
static int keyPressed ; /I current (previous) state of key

static float envelope /I current envelope value ->
float attack = ; /I attack time in samples
float release = ; /I release time in samples
float attackStep ; /I amount to increment each sample during
attack phase
float releaseStep ; /I amount to decrement each sample during
release phase
int newKeyState ; /I new on / off state of key
/I start
attackStep = | attack ; /I calculate attack and release steps
releaseStep = / release
newKeyState =THIS . synthNoteOn ==YES ?
/I printf ("envelope: %f, state: %d, keyPressed: %d, newKeySta te: %d\n" , envelope
state , keyPressed , newKeyState);
if (keyPressed == 0) { /I key has been up
if (newKeyState == 0) { Il if keyis still up

switch (state)

case ENV_RELEASE

/I printf ("dec: env: %f, rs: %f\n" , envelope , releaseStep);

envelope -= releaseStep
if (envelope <=) {
envelope = ;
state = ENV_OFF,
}
break ;
default :
state = ENV_OFF; /I this should already be the case
envelope = ;
break ;
}
else { /I keywas just pressed
keyPressed = 1; /I save new key state
state = ENV_ATTACK /I change state to attack

}

else { /I keyhas been down

if (newKeyState == 0) { /I if key was just released
keyPressed = 0; /I save new key state
State = ENV_RELEASE

else { /I key is still down

switch (state)

case ENV_ATTACK

/I printf ("inc: env: %f, as: %f\n" , envelope , attackStep);

envelope += attackStep
if (envelope >=) {

envelope = ;
}
break ;
default :

state = ENV_ATTACK /I this should already be the case

break ;
}

return (envelope);

Attack and release values are hard coded and seskas a “number of samples” — but
could easily be converted to milliseconds and adle in the user interface.

The attack state begins when a key (button) isspeand rises to its full value during the
duration of the attack. It then holds its maximuatue. The release state begins when a

key is released and continues for the duratioh@ft¢lease — at which point the value of

the envelope is 0 — indicating the note is off.

To implement a real synthesizer you would probalolgl functions to produce wave
forms, modulators, filters, and the ability to aguofe the signal and control path.

The core midi framework could also be used to mle\da midi interface for your
synthesizer in the same manner as it's used imtdesampler example.

Development

The source code for this project is in a githulos#ory at:
https://github.com/tkzic/audiograph

I would be very interested in your thoughts andgldlease contact me at
audiograph@zerokidz.com

References

Wondering why some of the link fonts (below) aresgtall? It's a workaround. My
ancient word processer has issues converting §p&aning more than one line when
creating .pdf files.

“Core Audio” by Chris Adamson

This yet to be published book is available in dfafin from Safaribooksonline. It's an
excellent resource for learning Core Audio on M&xG- with sample code.

http://my.safaribooksonline.com/book/audio/97803x8%7 3

IOS Developer Library — AudioUnit Hosting Guide for iOS
This is the document you must pass through on tetw enlightenment.

http://developer.apple.com/library/ios/#documentativusicAudio/Conceptual/AudioUnitHostingGuide_iQ8foduction/Introduction.html

IOS Developer Library — Audio Mixer (MixerHost)
MixerHost is the parent. audioGraph is the child.

http://developer.apple.com/library/ios/#samplechdieérHost/Introduction/Intro.html

IOS Developer Library — vDSP Programming Guide
An interesting example of technical writing andaanazing signal processing library.

http://developer.apple.com/library/ios/#documentafPerformance/Conceptual/vDSP_Programming_Guitteflnction/Introduction.html

VTMAUGraphDemo (by Chris Adamson)
Sample code that demonstrates new core audio ésatuiOS 5

http://www.subfurther.com/blog/2011/11/16/what-ymissed-at-voices-that-matter-ios-fall-2011/

[Time code]; A digital Media development Blog (by @ris Adamson)
The university of Core Audio.

http://www.subfurther.com/blog/

A Tasty Pixel (by Michael Tyson)

The blog is well written and contains excellentrapées of Core Audio iOS
programming.

http://atastypixel.com/

Pitch Shifting Using The Fourier Transform (by Steghan M. Bernsee)

This article and accompanying source code unveihtlgstery of programming in the
frequency domain.

http://www.dspdimension.com/admin/pitch-shiftingagsthe-ft/

The Scientist and Engineers Guide to Digital SigndProcessing (by
Stephen W. Smith)

It's available free online but | actually boughéthook.

http://www.dspquide.com/pdfbook.htm

Stackoverflow.com (Core Audio)
Have a question about anything? Someone on stadlawdas the answer.

http://stackoverflow.com/questions/tagged/core-audi

Apple Core Audio Mailing List Archive
The Jedi Knights of Core Audio.

http://lists.apple.com/archives/coreaudio-api

