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iOS Audio Processing Graph demonstration 
 
“An audio processing graph is a Core Foundation–style opaque type, AUGraph, that 
you use to construct and manage an audio unit processing chain. A graph can leverage the 
capabilities of multiple audio units and multiple render callback functions, allowing you 
to create nearly any audio processing solution you can imagine” –From Apple’s Audio 
Unit Hosting Guide For iOS  
 
AudioGraph is a superset of Apple's MixerHost application.  
 

Features include: 
 

• Mono & stereo mic/line input 
• Audio effects including: 

o Ring modulator 
o FFT passthrough using Accelerate vDSP framework. 
o Real-time pitch shifting and detection using STFT  
o Simple variable speed delay using a ring buffer 
o Recursive moving average filter with variable number of points 
o Convolution example with variable filter cutoff frequency 

• Stereo level meter 
• Synthesizer example - sine wave with envelope generator 
• iOS 5 features (from Chris Adamson) including: 

o MIDI sampler audio unit 
o file player audio unit 
o audio unit effects 

• Runs on iPad, iPhone, and iPod-Touch 
• Open source 
• Available as free download from iTunes App Store 
• Music by Van Lawton 
• Everything from MixerHost  

 



Requirements 
 
iPad, iPhone, or iPod-Touch  (iOS 5.x)  
Headphones. 

Instructions 
 
Launch the app and press Play.  
 

Source code, documentation, support, downloads 
 
audioGraph website: http://zerokidz.com/audiograph   
source code in Xcode project format: https://github.com/tkzic/audiograph  
support/questions/comments: audiograph@zerokidz.com  
audioGraph at iTunes App Store:  http://itunes.apple.com/app/audiograph/id486193487  
 

Credits 
 
Chris Adamson 
Stephan M. Bernsee 
Michael Tyson 
Steven W. Smith 
Apple Core-Audio mailing list 
stackoverflow.com 
Apple iOS developer program  
 
Thank you.  
 

keywords 
 
core audio, iOS, audio units, audio processing graph, core midi, iPad, iPhone, iPod-
Touch, MIDI, Sampler, FFT, Accelerate Framework, DSP, vdsp,  objective-C, C, C++, 
audio, signal processing, digital filters, STFT, audio effects, convolution, open source, 
iOS 5, callback, streaming, pitch shifting, pitch detection. 
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System design and programming 

Getting started 
 
I had no intention to write this code. I was working on another project – trying to detect 
the audio frequency of a car engine. You can program a lot of stuff without knowing 



anything about Core Audio but eventually you may run into a situation, like I did, where 
you want to process data at the sample level. If this is your situation you may find this 
project helpful. At the very least it will give you a working example of the iOS signal 
processing infrastructure. 
 
There is no definitive set of instructions for Core Audio. Currently the best resource is the 
work of Chris Adamson, including the draft of his upcoming book “Core Audio”.  
 
The Apple developer resources are great. This project started out as an Apple sample 
code project called MixerHost. Working code is often more useful than the sort of 
documentation you’re reading at this very moment. 
 
So if you’re looking for answers, they’re in the code. The source code for this project is 
available as a free download in Xcode 4.x project format at 
https://github.com/tkzic/audiograph 
 
 
Core Audio programs are typically a hybrid of C, Objective-C and C++.  My 
programming style is “cut and paste”. Some might call it slash and burn. In other words, 
don’t expect anything you would find in a computer science book.  For example, you will 
see at least three different methods of printing error messages to the console. Why? Code 
was copied from three different places. The goals here are: 
 

• Make stuff work 
• Try to understand why and write it down 
• Optimize  

 
You can learn a lot by removing pieces of code and seeing what breaks. My nephew took 
apart appliances and reassembled them using fewer parts. They would usually work just 
fine. 
 
Please read the “Audio Unit Hosting Guide For IOS” for the Apple iOS developer library 
and any other material you can find by Googling “iOS Core Audio. You may not 
understand it the first time. Unlike human relationships, it will eventually make sense. 
 
Just in case nobody mentioned this: To actually run your Xcode projects on a device you 
need to become a member of the iOS developer program ($99).  
 

Recommend development setup 
 

• Device running iOS 5.x 
• Mac Computer running OS 10.6 or greater 
• Xcode 4.x 

 



The simulator is great but not adequate for testing Core Audio. Try using the newest 
device you can find, with the most recent operating system. Other useful but non-
essential items… 
 

• An iOS MIDI interface (or a WIFI MIDI app like Midi Touch) 
• A USB stereo audio interface. (I have tested the Griffin iMic) 

 

Overview 
 
Audiograph is a superset of the MixerHost sample code from Apple. MixerHost provides 
structure for processing audio at the sample level in callback functions.  
 

 
This structure is called an audio processing graph. The components are audio units. 
 

 
 
Callbacks pull audio from a source, process it, and send it along. Processing typically 
includes things like: 
 

• filtering 
• effects 
• analysis 
• synthesis 
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Callbacks can also act as signal generators – synthesizing audio by producing sample 
data. 
 
Prior to iOS5, audio units were limited to IO and mixing, and format conversion. New 
audio unit types added in iOS5 include: 
 

• Effects (reverb, filtering, distortion, etc.,) 
• MIDI sampler 
• file player 

 
 
In this document I’ll focus on specific tasks -things that baffled and confused me - like 
reading stereo input data and convolution. Hopefully you will benefit from my mistakes. 
 

Source files 
 
In a project with many files it’s helpful to know where to look.  
 

Classes 
 
MixerHostAudio.h 
MixerHostAudio.m 
 
These files define the MixerHostAudio class and comprise the ‘model’ for the project. 
Callbacks, utility functions, instance and class methods. All of the core audio processing 
happens here. 
 
Classes/MixerHostViewController.h 
Classes/MixerHostViewController.m 
 
These files comprise the ‘controller’ for the project. For simplicity there is only one view 
controller. All user interface processing happens here. 
 

Views 
 
Resources/en.lproj/MixerHostViewController.xib 
Resources/en.lproj/MixerHostViewController~ipad.xib 
 
These files comprise the ‘view’ for the project. They are the nib files which contain the 
user interface screens. The iPad and iPhone views share the same controller.  
 



Other Sources 
 
smbPitchShift.m 
 
An adaptation of Stephan M. Bernsee’s STFT pitch shifting functions. 
 
TPCircularBuffer.h 
TPCircularBuffer.c 
 
A slightly modified version of Michael Tyson’s ring buffer implementation. 
 
SNFCoreAudioUtils.h 
SNFCoreAudioUtils.c 
 
 
Core Audio error printing utility functions from Chris Adamson. 
 

Sound Files 
 
Resources/lead.aupreset 
/Sounds/lead.aif 
 
A preset file and it corresponding base sound file for the MIDI sampler. 
 
Sounds/dmxbeat.aiff 
 
The sound file which is played by the file player audio unit. 
 
Resources/sounds/Caitlin.caf 
Resources/sounds/congaloop.caf 
 
Stereo guitar and mono drum loop files, played via streaming callbacks. 
 



System Design and User Interface 

audioGraph Signal Path 

 
 
One advantage to audio processing graphs is that the signal path is laid out in an orderly 
fashion. Connections between audio units can be made directly or through callbacks. The 
remote IO audio unit serves a dual purpose as an input and output device. It has an input 
scope and and output scope.  In the above diagram it is shown as two separate audio units 
at the beginning and end of the processing chain. The diagram below show effect 
processing options for the mic/line input callback function. 
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Mic/line input callback effect processing 
 

 
 
Almost any type of processing can be done in a callback. The only requirement is that 
data is copied to the output buffer, and that it’s done quickly enough to keep up with the 
sample rate and the frame rate. If these conditions are not met you will hear unpredictable 
sounds, no sounds, or odd zipper like versions of the sounds you expected.  

input samples   

ring modulator 

FFT pass through 

STFT pitch shifter 

simple delay 

low pass filter 

convolution filter 

output  samples   pass through  



 

iPad User Interface 

 
 
The user interface is arranged to mirror the signal path. The ‘Play’ button starts and stops 
the audio processing graph.    

Core Audio Setup 
 
The original MixerHost application is a great resource setting up Core Audio programs in 
iOS.  The underlying structure from MixerHost has been left intact in this project. 
 
The key steps are: 
 

1. Setup the audio session 
2. Define and configure audio units and stream formats (asbd’s) 
3. Configure and initialize the audio processing graph 

 
The Apple developer documentation does a great job of explaining how this works. I’ll 
address the confusing aspects of the process.  

Setup the Audio Session 
 



The AVAudioSession class configures audio behavior, including sample rate,  
interruption handling, and input device availability. 
 
This is done in: [setupAudioSession]  
 

Enabling input 
 
By default the audio session is set for output only (playback). If you are using a mic or 
line in device you will need to set the session to “Play and Record” 
 
//  Assign the Playback and Record category to the aud io session .  
    NSError * audioSessionError = nil ;  
    [ mySession setCategory :  AVAudioSessionCategoryPlayAndRecord 
                     error :  &audioSessionError ];  
     
    if  ( audioSessionError !=  nil )  {  
     
        NSLog (@"Error setting audio session category." );  
         
    }  

 

Detecting input devices and channels 
If you are processing input you will want to know how many channels are available and, 
in the case of the older iPod-Touch without the built-in mic, whether or not any input 
device is available. 
 
    //  
    //  check if  input is available 
    //  this only really applies to older ipod touch witho ut builtin mic 
    //  
    //  There seems to be no graceful way to handle this 
    //  
    //  what we do is :  
    //  
    //   1.  set instance var :  inputDeviceIsAvailable so app can make decisions 
    //     based on input availability 
    //   2.  give the user a message saying input device is not  available 
    //   3.  set the session for  Playback only 
    //   
    //  
    //  
     
     
     
    inputDeviceIsAvailable = [ mySession inputIsAvailable ];  
 
     
    if ( inputDeviceIsAvailable )  {  
            NSLog (@"input device is available" );  
    }  
    else  {  
        NSLog (@"input device not available..." );  
        [ mySession setCategory :  AVAudioSessionCategoryPlayback 
                         error :  &audioSessionError ];  
        
    }  

         
   



    

     
 
 
In the above example, if no input device is detected the session in reset to “playback 
only” to prevent an error that will occur if the session is started in “playback and record” 
mode with no input device. 
 
Another idiosyncrasy: The warning message to the user cannot be displayed until the 
View Controller has completed its loading process. So we set a boolean instance variable: 
inputDeviceIsAvailable.  Then after the loading process is complete the alert message is 
called in the [viewDidAppear] method of MixerHostViewController.m. 
 
-  ( void )  viewDidAppear :  ( BOOL)  animated {  
 
    [ super viewDidAppear :  animated ];  
    [[ UIApplication sharedApplication ]  beginReceivingRemoteControlEvents ];  
    [ self becomeFirstResponder ];  
     
    //  this alert needs to be here ,  becuase if  its in the viewDidLoad sequence you ' ll 
    //  get the error :  “applications are expected to have a root view con troller…” 
     
     
    if ( audioObject . inputDeviceIsAvailable == NO)  {  
        UIAlertView * alert = [[ UIAlertView alloc ]  initWithTitle : nil message :@"Mic is not 
available. Please terminate the app. Then connect a n input device and restart. Or you can 
use the app now without a mic."   delegate : self cancelButtonTitle :@"OK"  
otherButtonTitles : nil ];  
        [ alert show ];  
        [ alert release ];  
        
    }  
     
}  

 
The only way I have found to tell whether or not an external input device is connected – 
like a USB audio interface for example – is to call the 
[currentHardwareInputNumberOfChannels] method, after the audio session is started. 
 
//  find out how many input channels are available  
     
    NSInteger numberOfChannels = [ mySession currentHardwareInputNumberOfChannels ];    
    NSLog (@"number of channels: %d" ,  numberOfChannels );      
    displayNumberOfInputChannels = numberOfChannels ;     //  set instance variable 
 

 
The displayNumberOfInputChannels instance variable is used throughout the program to 
determine whether we are dealing with mono or stereo input. That is, one channel means 
mono – more than one channel means stereo. Of course this is a shortcut and the ideal 
situation would be to provide a menu to let the user configure mono, stereo, or 
multichannel input as is done in GarageBand on the iPad. 
 

Setting sample rate and slice buffer size 
 



As you may have already noticed, iOS devices can be stubborn. If you set the sample rate 
or the currentBufferDuration in the audio session, you aren’t guaranteed to get what you 
asked for. So it’s a good idea to actually find out the actual sample rate and buffer size 
after the audio session is started, using: 
 
[currentHardwareSampleRate] and AudioSessionGetProperty().  
 
//  Obtain the actual hardware sample rate and store i t for  later use in the audio 
processing graph .  
    self . graphSampleRate = [ mySession currentHardwareSampleRate ];  
    NSLog (@"Actual sample rate is: %f" ,  self . graphSampleRate );  
     
    //  find out the current buffer duration 
    //  to calculate duration use :  buffersize /  sample rate ,  eg .,  512 /  44100  = .012  
     
    //  Obtain the actual buffer duration -  this may be necessary to get fft stuff working 
properly in passthru 
    AudioSessionGetProperty ( kAudioSessionProperty_CurrentHardwareIOBufferDurati on ,  &sss ,  
&currentBufferDuration );  
    NSLog (@"Actual current hardware io buffer duration: %f " ,  currentBufferDuration );  
     

 
The above example is a classic example of the unusual mix of C and Objective-C that is 
Core Audio. 
 

Define Audio Stream Formats (asbd’s) 
Core Audio uses the asbd (audio stream basic description) structure to set audio formats 
on the input and output buses of audio units.  
 
The recommended default settings for each type of audio unit can be found in the Apple 
documentation.  
 
The following methods provide examples of how to set asbd’s: 
 
[setupStereoStreamFormat] (fixed point 8.24 (32 bit) non interleaved 2 channel) 
[setupMonoStreamFormat]  (fixed point 8.24 (32 bit)) 
[setupSInt16StreamFormat]  (Signed 16 bit integer  (SInt16)) 
 
This is the [setupStereoStreamFormat] method. 
 
-  ( void )  setupStereoStreamFormat {  
 
    //  The AudioUnitSampleType data type is the recommend ed type for  sample data in audio 
    //     units .  This obtains the byte size of the type for  use in filling in the ASBD .  
    size_t bytesPerSample = sizeof ( AudioUnitSampleType );  
 
 
    //  Fill the application audio format struct ' s fields to define a linear PCM ,   
    //         stereo ,  noninterleaved stream at the hardware sample rate .  
    stereoStreamFormat . mFormatID          = kAudioFormatLinearPCM ;  
    stereoStreamFormat . mFormatFlags       = kAudioFormatFlagsAudioUnitCanonical ;  
    stereoStreamFormat . mBytesPerPacket    = bytesPerSample ;  
    stereoStreamFormat . mFramesPerPacket   = 1;  
    stereoStreamFormat . mBytesPerFrame     = bytesPerSample ;  
    stereoStreamFormat . mChannelsPerFrame  = 2;                     //  2 indicates stereo 



    stereoStreamFormat . mBitsPerChannel    = 8 *  bytesPerSample ;  
    stereoStreamFormat . mSampleRate        = graphSampleRate ;  
 
 
    NSLog (@"The stereo stream format:" );  
    [ self printASBD :  stereoStreamFormat ];  
}  
 

  
In the above example, the kAudioFormatFlagsAudioUnitCanonical constant is used to set flag 
bits indicating  
 

• Fixed point 8.24 
• Native endian 
• Packed 
• Non interleaved 

 
If you look at the flag definitions for this format, it appears at first to be “signed integer” 
but in fact there is an additional flag bit (unit sample fraction bits) which makes it a fixed 
point format in iOS.  It can be confusing. The [printABSD] method is helpful for 
examining and debugging stream format issues. 
 
Note: AudioUnitSampleType and AudioSampleType are not the same. In iOS, the former 
is 8.24 fixed point and the latter is SInt16. 
 

 

Input device asbd’s 
 
Here are some observations about asbd’s on mic and line inputs.  
 
You can set the remote IO input bus (mic) to SInt16, as long as you are only using one 
channel. SInt16 format streams will not work with multiple channels, (stereo). Use the 
canonical AudioUnitSampleType (fixed point 8.24) as shown in the above example. You 
can always convert samples from one format to another in a callback function. There’s an 
example of this in micLineInCallback(). 
 
I have not been able to get a floating point asbd to work on the input bus of the remote IO 
unit. 
 
Stick with the canonical AudioUnitSampleType  or whatever works. 



 

Audio unit effect asbd’s 
 
Now for something completely different. The asbd for audio unit effects is set by getting 
the default asbd setting  (which is initialized from the audio unit basic description) and 
then setting the sample rate. This is done in:  
[configureAndInitializeAudioProcessingGraph]. 
 
//  get default asbd properties of au effect unit ,   
//  this sets up the auEffectStreamFormat asbd 
 
    UInt32 asbdSize = sizeof ( auEffectStreamFormat );  
    memset (& auEffectStreamFormat ,  0,  sizeof ( auEffectStreamFormat ));  
    CheckError ( AudioUnitGetProperty ( auEffectUnit ,  kAudioUnitProperty_StreamFormat ,  
kAudioUnitScope_Input ,  0,  &auEffectStreamFormat ,  &asbdSize ),   
               "Couldn't get aueffectunit ASBD" );  
     
    //  debug print to find out what ' s actually in this asbd 
     
    NSLog (@"The stream format for the effects unit:" );  
    [ self printASBD :  auEffectStreamFormat ];  
     
    auEffectStreamFormat . mSampleRate = graphSampleRate ;    //  set sample rate 
     
    //  now set this asbd to the effect unit input scope  
    //  note :  if  the asbd sample rate is already equal to graphsamp lerate 
    // then this next statement is not 
    //  necessary because we derived the asbd from what it  was already set to .  
     
   
    CheckError ( AudioUnitSetProperty ( auEffectUnit ,  kAudioUnitProperty_StreamFormat ,  
kAudioUnitScope_Input ,  0,  &auEffectStreamFormat ,  sizeof ( auEffectStreamFormat )),   
               "Couldn't set ASBD on effect unit input" );  
     

 
Note the wrapper function CheckError(). This is a very cool utility by Chris Adamson 
that simplifies error checking in Core Audio. The Core Audio function is wrapped inside. 
 
By the way in the above example, the effect audio units asbd  is set to stereo 32 bit 
floating point, non interleaved. 
 

asbd ad infinitum 
 
Working with asbd’s can be frustrating. With so many parameters it’s easy to set 
something wrong.  
 
In general, the asbd’s of connected buses should match. For example, if the output bus of 
an audio unit effect is connected to the input of a mixer, user the same asbd for both. 
 
The same is true with callbacks.  For example, if a callback pulls input data from the 
remote IO bus and passes it to a mixer input bus, use the same asbd. 
 



The asbd’s on the input and output scope of a particular audio unit can be different. For 
example, various stream formats can be attached to mixer input bus channels even though 
the mixer output stream format may be completely different. The appropriate conversion 
is handled automatically within the audio unit. 
  
Helpful Xcode hint: Right-click on any asbd property or constant and select “jump to 
definition” to go the code where it’s defined. 
 

Configure and initialize the audio processing graph  
 
Most of the Core Audio setup code in this project is found in 
[configureAndInitializeAudioProcessingGraph]. This is where the audio units are 
defined, configured, and connected.   
 
Here’s a rough outline of the steps: 
 

1. Instantiate and open an audio processing graph 
2. specify audio unit component descriptions for all units in the graph 
3. add nodes to the graph 
4. Open graph and get the audio unit nodes for the graph 
5. Configure the remote IO unit 
6. Configure the Multichannel Mixer unit 

a. Specify the number of input buses, output sample rate, and maximum 
frames-per-slice 

b. Configure each input channel of mixer 
i. Set callback structs 
ii. Set asbd's 

7. Configure any other audio units (fx, sampler, fileplayer) 
8. Make processing graph connections 
9. Start the processing graph 
10. Configure audio unit parameters 
11. Setup other post graph parameters (midi and fileplayer) 

 

Enabling Input on the RIO audio unit 
By default, input is disabled on the remote IO audio unit. Here’s how to make it work. 
 
AudioUnitElement ioUnitInputBus = 1;  
     
        //  Enable input for  the I / O unit ,  which is disabled by default .  ( Output is 
        //   enabled by default ,  so there ' s no need to explicitly enable it .)  
        UInt32 enableInput = 1;  
     
        AudioUnitSetProperty (  
                          ioUnit ,  
                          kAudioOutputUnitProperty_ EnableIO ,  
                          kAudioUnitScope_Input ,  
                          ioUnitInputBus ,  
                          &enableInput ,  



                          sizeof ( enableInput )  
                          );  
     

 
 The remote IO audio unit has a split personality. It’s used for connecting to input devices 
like the microphone (input scope) and output devices like speakers (output scope). 
 
In the above example we’re setting the input bus on the input scope of the remote IO 
audio unit.   
 

Connections, callbacks, and the end of the line 
 
Here are a few important considerations for making connections in an audio processing 
graph. 
 
Connections or Callbacks, not both: If you connect two audio units using a callback 
then you should not explicitly connect their nodes using AUGraphConnectNodeInput(). 
 
Conversely, you should’t define a callback on audio units that will be connected using  
AUGraphConnectNodeInput(). 
 
Pass the class: When setting the *inRefCon struct to pass to a callback function, rather 
than defining a special struct to pass the data needed by the callback, its much easier to 
pass a reference to the entire class. 
 
In the following example the inputProcRefCon is set to ‘self’ 
 
UInt16 busNumber = 2;       //  mic channel on mixer 
     
        //  Setup the structure that contains the input render  callback  
        AURenderCallbackStruct inputCallbackStruct ;  
     
        inputCallbackStruct . inputProc        = micLineInCallback ;    //  8.24 version 
        inputCallbackStruct . inputProcRefCon  = self ;  
     
     
        NSLog (@"Registering the render callback - mic/lineIn - wit h mixer unit input bus 
%u",  busNumber );  
        //  Set a callback for  the specified node ' s specified input 
        result = AUGraphSetNodeInputCallback (  
                                          processin gGraph ,  
                                          mixerNode ,  
                                          busNumber ,  
                                          &inputCallbackStruct 
                                          );  
     
        if  ( noErr !=  result )  {[ self printErrorMessage :  @"AUGraphSetNodeInputCallback 
mic/lineIn"  withStatus :  result ];  return ;}  
     

 
 Inside the callback you will have access to all of the instance variables in the 
MixerHostAudio class. This is a huge convenience. 
 



No asbd at the end of the line: Technically the final audio unit in the processing graph is 
the output scope of the remote IO unit. But in pragmatic terms consider what comes just 
before that. In our case it’s an audio unit effect tacked on to the mixer output as a master 
effect. In any case, the only parameter that needs to be set is the sample rate. The 
processing graph will handle everything else. 
 
NSLog (@"Setting sample rate for au effect unit output scop e" );  
    //  Set the mixer unit ' s output sample rate format .  This is the only aspect of the 
output stream 
    //     format that must be explicitly set .  
    result = AudioUnitSetProperty (  
                                   auEffectUnit ,  
                                   kAudioUnitProper ty_SampleRate ,  
                                   kAudioUnitScope_ Output ,  
                                   0,  
                                   &graphSampleRate ,  
                                   sizeof ( graphSampleRate )  
                                   );  
     
    if  ( noErr !=  result )  {[ self printErrorMessage :  @"AudioUnitSetProperty (set au effect 
unit output stream format)"  withStatus :  result ];  return ;}  
    

     

Communicating with the user interface 
If you grew up in the old country you’re probably not thrilled with the Model-View-
Controller paradigm. But here we are. 
 
Methods in the MixerAudioHost class should not directly control the user interface. This 
is the realm of the view controller. But the view controller has access to methods and 
properties of MixerAudioHost.  
 
Look at the [viewDidLoad] method in MixerHostViewController.m 
 
 
-  ( void )  viewDidLoad {  
 
    [ super viewDidLoad ];  
 
    MixerHostAudio * newAudioObject = [[ MixerHostAudio alloc ]  init ];  
    self . audioObject = newAudioObject ;  
    [ newAudioObject release ];  
 
 
    [ self registerForAudioObjectNotifications ];  
    [ self initializeMixerSettingsToUI ];  
     
       
}  

 
This is the code that gives the view controller to access the MixerHostAudio class using 
the reference: audioObject.  For example,  
 
[audioObject playSynthNote ]; invokes the [playSynthNote] method from within the view 
controller.  
 



From the perspective of the MixerHostAudio class - if methods in MixerHostAudio  need 
to communicate with the view controller, they should set instance variables which the 
view controller can discover. 

Timer loop 
 
Here’s an example to illustrate the behavior described above. In the micLineInCallback() 
The level of the input signal is measured for each slice of sample data. Then it’s saved in 
the MixerHostAudio instance variables: displayInputLevelLeft and 
displayInputLevelRight. 
 
    //  get average input volume level for  meter display 
    //   
    //  ( note :  there ' s a vdsp function  to do this but it works on float samples 
    
    
    
   THIS . displayInputLevelLeft = getMeanVolumeSint16 (  sampleBufferLeft ,  inNumberFrames );  
//  assign to instance variable for  display 
    if ( isStereo )  {  
        THIS . displayInputLevelRight = getMeanVolumeSint16 ( sampleBufferRight ,  
inNumberFrames );  //  assign to instance variable for  display 
      }  

  

Now back to the view controller, in [initializeMixerSettingsToUI], we start up a timer. 
 
 
[ NSTimer scheduledTimerWithTimeInterval : 0.1  
                                     target : self 
                                   selector :@selector ( myMethod :)  
                                   userInfo : audioObject 
                                    repeats :  YES ];  
 

 
The timer invokes a callback called [myMethod] every 100 milliseconds.  
 
Inside [myMethod] the view controller discovers current values of the MixerHostAudio 
instance variables and displays them as progress indicators on the screen. They actually 
look like level meters if you’re sleepy. 
 
 
//  This is the timer callback method 
//  sorry about the name 
//  
//  it checks the value of instance variables in Mixer HostAudio 
//  and displays them at regular intervals 
 
//  in the crazy convoluted world of objective - c 
//  userInfo conveniently points to AudioObject  
//  
-  ( void )  myMethod :  ( NSTimer *)  timer {  
     
//   float z = [[ timer userInfo ]  frequency ];  
//     UInt32 y = [[ timer userInfo ]  micLevel ];  
    int numChannels ;  
         
    micFreqDisplay . text = [ NSString stringWithFormat :@"%d" ,   
                        [[ timer userInfo ]  displayInputFrequency ]];  
     



    numChannels = [[ timer userInfo ]  displayNumberOfInputChannels ];  
    numberOfInputChannelsDisplay . text = [ NSString stringWithFormat :@"%d" , numChannels ];  
     
 
         
    inputLevelDisplayLeft . progress =  [[ timer userInfo ]  displayInputLevelLeft ];  
     
    if ( numChannels == 1)  {       //  if  mono duplicate left channel meter 
        inputLevelDisplayRight . progress = [[ timer userInfo ]  displayInputLevelLeft ];  
    }  
    else  if ( numChannels == 2)  {                       //  otherwise  use separate data for  
right channel 
        inputLevelDisplayRight . progress = [[ timer userInfo ]  displayInputLevelRight ];  
    }  
     
    //  note :  we ' re asuuming that we ' ll only have 1 or 2 channels ( mono or stereo )  
    //  If  zero input channels the program would have exited from AVSession init 
    //  if  more than two ,  we actually need to do some work to find out what they are and  
    //  provide a UI to configure them 
     
     
     
}  
  

 
This form of communication is like leaving notes for family members rather than talking 
to them directly.  

Handling events and interruptions 
 
What happens when you unplug a headset? The audioRouteChangeListenerCallback() 
handles this type of event. This code from the MixerHost application has been left intact.  
 

Notes on Audio Units 

Effects Units 
Audio unit effects are new in iOS 5.  
 
Audio unit effects are probably the easiest type of audio unit to configure.  

1. Specify the audio unit component description 
2. Add the unit to the processing graph 
3. Set the asbd 
4. Connect the processing graph node 
5. After starting the processing graph, set effect parameters 
 

 
As of iOS 5.0.1 there is a bug in the bypass parameter for some of the audio unit effects. 
After the first time the effect is bypassed it doesn’t start back up again when it is un-
bypassed. This happens with the distortion and reverb effects. The lowpass and highpass 
filter effects, used in this project, are working properly. 
 



MIDI Sampler Unit 
(under construction) 
 
The MIDI Sampler audio unit is new to iOS 5. The sampler plays AUpreset files. To 
make an AUpreset file, use the AU Lab application located in: 
 
/Developer/Application/Audio/AU Lab 
 
The MIDI Sampler code in this project was adapted from the Apple LoadPresetDemo and 
Chris Adamson’s VTMAUGraphDemo. 
 

MIDI device connections 
I have not tested MIDI hardware interfaces with iOS but I have successfully used an app 
called touchMIDI. touchMIDI running in the background creates a MIDI via WIFI 
connection to the iPad.  
 
This, for example, allows you to play the MIDI sampler in this program, from a MIDI 
keyboard connected to a Macbook – or from any applications running in Mac OS which 
generates MIDI data, like Garageband, Max/MSP, or Ableton Live. 
 

Fileplayer Unit  
(under construction) 
 
The Fileplayer audio unit is new to iOS 5. 
 
The Fileplayer code in this project was adapted from Chris Adamson’s 
VTMAUGraphDemo. 
 

Audio callbacks 
 
Audio callbacks are where the magic happens. An audio callback pulls sample data into 
the input bus of an audio unit. It all happens very fast. For example, at a sample rate of 
44.1 KHz and a slice size of 1024 frames, the callback function runs 43 times per second. 
The prime directive of an audio callback function is to fill its output buffers with sample 
data.  
 
What can you accomplish in 23 milliseconds?  As it turns out, quite a lot. For example, 
effects processing, analysis, pitch shifting, and filtering. All these can be accomplished in 
real time on an iOS device. 
 
We will look at two callbacks: 
 



1. the mic/line input callback which pulls data from the output bus of the input scope 
of the remote IO audio unit into an input bus of the multichannel mixer. 

2. the synth callback which generates sample data that gets pulled into an input bus 
of the multichannel mixer    

 
Things to avoid in audio callbacks: 
 

• Anything that takes a lot of time 
o Allocating buffers 
o Objective-C 
o User interface processing 

• Blocking processes  
o User input 
o Reading files 

 

Mic/Line input callback 
 
The mic/line input callback gets data by “rendering” incoming audio from the remote IO 
audio unit – which is directly connected to a microphone or input device. 
 

*inRefCon 

 
The *inRefCon argument to the callback function is a pointer to a scope or context which 
may contain data that is needed by the callback. For convenience this is set to the 
MixerHostAudio class – making available all the instance variables of the class. 
 
 
//  scope reference that allows access to everything i n MixerHostAudio class 
 
    MixerHostAudio * THIS = ( MixerHostAudio *) inRefCon ; 
 

 
For example, in the callback, THIS.isStereo would refer to the MixerHostAudio instance 
variable isStereo. 
 

Audio rendering 
 
Here is an example of rendering data from the remote IO audio unit inside the callback 
function. It uses AudioUnitRender().  
 
 
//  copy all the input samples to the callback buffer -  after this point we could bail and 
have a pass through 



     
    renderErr = AudioUnitRender ( rioUnit ,  ioActionFlags ,   
                                inTimeStamp ,  bus1 ,  inNumberFrames ,  ioData );  
    if  ( renderErr < 0)  {  
        return  renderErr ;  
    }  
 

 
At this point, if you wanted to pass audio through, without additional processing, the 
callback could return, having completed its mission. 
 

Sample type conversion 
 
As mentioned in the section on asbd’s, the default sample format for iOS input devices is 
8.24 fixed point. There are only a few kids in the neighborhood who understand fixed 
point math.  A typical signal processing textbook will present examples in floating point 
or integer. There are examples of both in this project.  
 
So after rendering the sample data the next priority is to convert the data. We are 
converting to SInt16 (Signed 16 bit integer) format – as a first step and then later 
converting to floating point if necessary. 
 
Here are the functions to convert fixed point 8.24 to SInt16 and back again. 
 
/////////////////////////////////////////////////// /////  
//  convert sample vector from fixed point 8.24  to SInt16 
void fixedPointToSInt16 (  SInt32 *  source ,  SInt16 *  target ,  int length )  {  
     
    int i ;  
     
    for ( i = 0; i < length ;  i ++ )  {  
        target [ i ]  =  ( SInt16 )  ( source [ i ]  >> 9);  
         
    }  
     
}  
 
/////////////////////////////////////////////////// /////  
//  convert sample vector from SInt16 to fixed point 8.24   
void SInt16ToFixedPoint (  SInt16 *  source ,  SInt32 *  target ,  int length )  {  
     
    int i ;  
     
    for ( i = 0; i < length ;  i ++ )  {  
        target [ i ]  =  ( SInt32 )  ( source [ i ]  << 9);  
        if ( source [ i ]  < 0)  {   
            target [ i ]  |=  0xFF000000 ;  
        }  
        else  {  
            target [ i ]  &= 0x00FFFFFF ;  
        }  
         
    }  
     
}  
 
   

 



 
To convert fixed point to integer, shift the data 9 bits to the right. To go from integer to 
fixed point, shift the data 9 bits to the left and extend the sign bit by masking. Some 
resolution is lost going from 24 to 16 bits but it’s not critical for a typical iOS application.  

Stereo data and Interleaving 
The default for sample data in iOS is non-interleaved. That is, each channel is stored in a 
contiguous block. Here is an example of how to access left and right channel data. In fact 
it’s the fixed point to SInt16 conversion described above. 
 
//  convert to SInt16 
     
  
    inSamplesLeft = ( AudioUnitSampleType *)  ioData -> mBuffers [ 0]. mData;  //  left channel 
    fixedPointToSInt16 ( inSamplesLeft ,  sampleBufferLeft ,  inNumberFrames );  
 
    if ( isStereo )  {  
        inSamplesRight = ( AudioUnitSampleType *)  ioData -> mBuffers [ 1]. mData;  //  right 
channel 
        fixedPointToSInt16 ( inSamplesRight ,  sampleBufferRight ,  inNumberFrames );  
    }  
 

 
 After rendering, sample data is stored in a buffer list. In this case ioData-
>mBuffers[0].mdata is the left channel. For example, ioData->mBuffers[0].mdata[3] 
would be the fourth sample in the left channel buffer. Got that? 

Stereo effects processing 
 
Without optimization some of the effects work ok in stereo on a classic iPod-Touch, but 
most exhibited disturbing zippering sounds as the callback churned and labored to meet 
its prime directive. For now stereo channel data is summed and processed in a single 
channel. 
 

Signal processing in audio callbacks 
This section describes the signal processing examples which are attached to the mic/line 
input callback. To me this is the most exciting part of the project. It was around 4 in the 
morning when I finally debugged the pitch-shifting code and heard a Darth Vader version 
of my voice in the earbuds. Sadly the people trying to sleep, in other rooms of the house, 
were only hearing an insomniac talking to his iPod. 

Ring Modulator 
A ring modulator multiplies two input signals in the time domain. The result is a signal 
which contains the sum and difference of the input signals. In this example the mic/line 
input is multiplied by a sine wave. The frequency of the sine wave is set by the fx control 
slider and varies from .00001 Hz to 4000 Hz. 
 
Here is the ringMod() function.  It is called from the mic/line callback function. 



 
/////////////////////////////////////////////  
//  ring modulator effect -  for  SInt16 samples 
//  
//  called from callback function  that passes in a slice of frames 
//  
void ringMod (   
             void * inRefCon ,                 //  scope ( MixerHostAudio )  
              
             UInt32 inNumberFrames ,         //  number of frames in this slice 
             SInt16 * sampleBuffer )  {       //  frames ( sample data )  
     
    //  scope reference that allows access to everything i n MixerHostAudio class  
     
    MixerHostAudio *  THIS = ( MixerHostAudio *) inRefCon ;        
     
    UInt32 frameNumber ;      //  current frame number for  looping  
    float theta ;             //  for  frequency calculation 
    static float phase = 0;  //  for  frequency calculation 
    float freq ;              //  etc .,  
    AudioSampleType * outSamples ;     //  convenience pointer to result samples 
     
    outSamples  = ( AudioSampleType *)  sampleBuffer ;  //  pointer to samples 
     
    freq = ( THIS . micFxControl *  4000 )  + .00001 ;  //  get freq from fx control slider 
    //  .00001  prevents divide by 0 
     
    //  loop through the samples 
     
    for  ( frameNumber = 0;  frameNumber < inNumberFrames ;  ++frameNumber )  {  
         
        theta = phase *  M_PI *  2;    //  convert to radians  
        outSamples [ frameNumber ]  = ( AudioSampleType )  ( sin ( theta )  *  
outSamples [ frameNumber ]);  
         
        phase += 1.0  /  ( THIS . graphSampleRate /  freq );    //  increment phase 
        if  ( phase > 1.0 )  {                               //  phase goes from 0 ->  1 
            phase -=  1.0 ;  
        }  
         
    }  
     
     
     
} 
 

 
A ring modulator is a simple effect to program. It illustrates the basic processing loop 
which iterates through a slice of frames generating output samples from input samples.  
 
When generating signals one sample at a time the sample rate is critical. For example, if 
the sample rate is 44.1 KHz, each iteration of the processing loop will generate 1/44100th 
of the cycle. 
 
In this example, and in the synthesizer callback, we calculate the sample value from the 
instantaneous phase value. In this example, phase runs from 0->1 in 1/44100 increments 
and is converted to radians for the sin() function. 
 
Keep in mind that we’re working with Integer samples. The results of any calculations 
should be cast to SInt16 format. Fun fact: In iOS (AudioSampleType) is SInt16. But 
(AudioUnitSampleType) is fixed point 8.24.  
 



One final observation - after each invocation of ringMod() the phase value needs to be 
preserved for the next slice of sample data. This is handled by a static local variable.  

Simple delay 
The simple delay (echo) example mixes the current input signal with the input signal 
from some point in the past. The fx control slider determines the length of the delay. 
 
There are two extra steps required prior to the processing loop. Current sample data needs 
to be saved. And the delayed data needs to be retrieved.  You’ll need to save enough 
sample data to equal the amount of the delay. For example, if the delay is one second at a 
sample rate of 44.1 KHz, the delay buffer should hold at least 44100 samples.  This delay 
line is implemented with a ring buffer.  
 
We’re using an adaptation of the TPCircularBuffer class written by Michael Tyson 
https://github.com/michaeltyson/TPCircularBuffer 
 
A ring buffer is typically separates the process of writing and reading data. The write 
pointer or “head” is always kept ahead of the read point (“tail”) by a sufficient amount to 
allow for timing differences between reading and writing. 
 
Without a ring buffer you would need a buffer size equal to the maximum possible 
amount of data that would be processed. In the case of real time audio processing, the 
buffer would need to be infinitely large.  So in a sense ring buffers are a computer science 
version of recycling.  
 

   
 
With a delay line the tail position is determined by subtracting the delay length from the 
head. Also. locking isn’t needed since the write and read processes happen in the same 
thread.  
 
The amount of delay is determined by the distance of the tail from the head. Our 
adaptation of TPCircularBuffer allows re-calculation of the tail based on the amount of 
delay. 



 
Here is the code that writes data into the ring buffer. 
    
    int32_t tail ;            //  tail of ring buffer ( read pointer )  
    
    SInt16 * targetBuffer ,  * sourceBuffer ;    //  convenience pointers to sample data 
     
     
    SInt16 * buffer ;          //   
    int sampleCount = 0;                     //  number of samples processed in ring buffer 
    int samplesToCopy = inNumberFrames ;      //  total number of samples to process 
    int32_t length ;                          //  length of ring buffer 
    int32_t delayLength ;                     //  size of delay in samples 
    int delaySlices ;     //  number of slices to delay by 
     
     
    //  Put audio into circular delay buffer 
     
    //  write incoming samples into the ring at the curren t head position 
    //  head is incremented by inNumberFrames 
     
     
    //  The logic is a bit different than usual circular b uffer because we don ' t care  
    //  whether the head catches up to the tail -  because we ' re going to manually 
    //  set the tail position based on the delay length ea ch time this function  gets 
    //  called .   
     
    samplesToCopy = inNumberFrames ;  
     
    sourceBuffer = sampleBuffer ;  
    length = TPCircularBufferLength (& delayBufferRecord );  
    //  printf ( "length: %d\n" ,  length );  
     
 
    while ( samplesToCopy > 0)  {  
        sampleCount =  MIN ( samplesToCopy ,  length -  
TPCircularBufferHead (& delayBufferRecord ));  
        if ( sampleCount == 0)  {  
            break ;  
        }  
        buffer = delayBuffer + TPCircularBufferHead (& delayBufferRecord );  
        memcpy (  buffer ,  sourceBuffer ,  sampleCount * sizeof ( SInt16 ));  //  actual copy 
        sourceBuffer += sampleCount ;  
        samplesToCopy -=  sampleCount ;  
        TPCircularBufferProduceAnywhere (& delayBufferRecord ,  sampleCount );   //  this 
increments head 
    }  
     
     
     

 
It looks more complicated that it is. With ring buffers you can’t just copy in a chunk of 
data. If the head is closer to the physical end of the buffer than the length of the incoming 
data, then the copy must be done in 2 steps. The remaining data gets copied to the 
physical start of the buffer. If this is confusing, try sketching some diagrams of various 
data sizes and head positions. The difficulty lies in imposing a circular construct on a 
finite linear buffer.  
 
Here’s the code to retrieve the data. The position of the tail (read pointer) is determined 
by the delay length which the user controls with the fx slider. Copying data out of the 
ring buffer involves the same two step process as described above. 
 
//  Now we need to calculate where to put the tail -  note this will probably blow 



    //  up if  you don ' t make the circular buffer big enough for  the delay 
     
    delaySlices = ( int )  ( THIS . micFxControl *  80);  
     
    delayLength = delaySlices *  inNumberFrames ;       //  number of slices do delay by 
    //  printf ( "delayLength: %d\n" ,  delayLength );  
    tail = TPCircularBufferHead (& delayBufferRecord )  -  delayLength ;  
    if ( tail < 0)  {  
        tail = length + tail ;  
    }  
     
     
     
    TPCircularBufferSetTailAnywhere (& delayBufferRecord ,  tail );  
     
     
    targetBuffer = tempDelayBuffer ;  //  tail data will get copied into temporary buffer 
    samplesToCopy = inNumberFrames ;  
     
     
     
    //  Pull audio from playthrough buffer ,  in contiguous chunks 
     
    
     
    //  this is the tricky part of the ring buffer where w e need to break  the circular 
    //  illusion and do linear housekeeping .  If  we ' re within 1024  of the physical 
    //  end  of buffer ,  then copy out the samples in 2 steps .  
     
    while  (  samplesToCopy > 0 )  {  
        sampleCount = MIN ( samplesToCopy ,  length -  
TPCircularBufferTail (& delayBufferRecord ));  
        if  (  sampleCount == 0 )  {  
            break ;     
        }  
        //  set pointer based on location of the tail 
         
        buffer = delayBuffer + TPCircularBufferTail (& delayBufferRecord );  
         
    
         
        memcpy ( targetBuffer ,  buffer ,  sampleCount * sizeof ( SInt16 ));  //  actual copy 
         
        targetBuffer += sampleCount ;     //  move up target pointer 
        samplesToCopy -=  sampleCount ;    //  keep track of what ' s already written 
        TPCircularBufferConsumeAnywhere (& delayBufferRecord ,  sampleCount );   //  this 
increments tail 
    }  
     

     

     
At this point we have a slice of delayed samples and a slice of current samples. They are 
mixed together by scaling and adding. 
 
//  convenience pointers for  looping 
     
    AudioSampleType * outSamples ;  
    outSamples = ( AudioSampleType *)  sampleBuffer ;  
     
    
     
 
     //  mix the delay buffer with the input buffer 
     
    //  so here the ratio is .4  *  input signal 
    //  and .6  *  delayed signal 
     
    for  (  i = 0;  i < inNumberFrames ;  i ++ )  {  



        outSamples [ i ]  = ( .4  *  outSamples [ i ])  + ( .6  *  tempDelayBuffer [ i ]);  
    }  
     

     

 
 
There are simpler ways to implement a delay line. But you will probably find the ring 
buffer a useful tool for other audio processing tasks. We will use the same algorithm in 
the next two sections to implement digital filters 
 

Recursive moving average (lowpass) filter 
 
This example illustrates a simple moving average filter with a variable number of points 
(3->101) determined by the fx control slider. Increasing the number of points is roughly 
equivalent to lowering the cutoff frequency.  
 

 
The filter algorithm is adapted from Steven W. Smith’s book “The Scientist and 
Engineers Guide to Digital Signal Processing” available free, online at 
http://www.dspguide.com 
 
The algorithm is found in table 15-2.  
 
A recursive filter runs faster because it uses the results of previously calculated samples 
to calculate new ones. 
 
This algorithm requires a buffer of input samples equal to the size of the input signal plus 
the size of the filter minus 1, which, by the way, is the requirement for any digital filter 
based on convolution. 
 
So if our callback function needs 1024 samples and the filter size is 101 we’ll need a 
buffer with at least 1034 samples. To get the extra samples we’ll use a ring buffer as 
described above in the Simple Delay. 
 
One other housekeeping task: We need to convert sample data from SInt16 to floating 
point. The Accelerate vDSP framework provides functions to do this: 
 
  //     ConvertInt16ToFloat 
     
    vDSP_vflt16 (( SInt16 *)  sampleBuffer ,  stride ,  ( float *)  analysisBuffer ,  stride ,  
bufferCapacity );  
 

 



The stride factor relates to interleaving. In this case the data is non-interleaved so the 
stride = 1. There is an excellent discussion of stride factors in the Apple iOS developer 
library: “vDSP programming guide”. 
 
The size of the filter (and the position of the tail in the ring buffer) is determined by the 
position of the fx control slider. 
 
Here is the code to run the filter. 
 
//  ok now we have enough samples in the temp delay bu ffer to actually run the  
    //  filter .  For  example ,  if  slice size is 1024  and filterLength is 101  -  then we 
    //  should have 1124  samples in the tempDelayBuffer 
     
     
    signalBuffer = tempCircularFilterBuffer ;  
    resultBuffer = THIS . outputBuffer ;  
     
  
     
    acc = 0;   //  accumulator -  find y [ 50 ]  by averaging points x [ 0]  to x [ 100 ]  
     
    for ( i = 0;  i < filterLength ;  i ++ )  {  
        acc += signalBuffer [ i ];  
    }  
     
     
    resultBuffer [ 0]  = ( float )  acc /  filterLength ;  
     
    //  recursive moving average filter 
     
    middle = ( filterLength -  1)  /  2;  
     
     
    for  (  i = middle + 1;  i < ( inNumberFrames + middle )  ;  i ++ )  {  
        acc = acc + signalBuffer [ i + middle ]  -  signalBuffer [ i -  ( middle + 1)];  
        resultBuffer [ i -  middle ]  = ( float )  acc /  filterLength ;  
    }  
     

  
All that remains is to convert the data back to SInt16 format – which is done using 
another vDSP function. 
 
//  now convert from float to Sint16 
     
    vDSP_vfixr16 (( float *)  resultBuffer ,  stride ,  ( SInt16 *)  sampleBuffer ,  stride ,  
bufferCapacity );  

     

Low Pass convolution filter 
This example is a low pass windowed-sinc filter with a variable cutoff frequency 
implemented by convolution.  
 



 
 
This algorithm is adapted from Steven W. Smith’s book “The Scientist and Engineers 
Guide to Digital Signal Processing”, table 16-1, available at http://www.dspguide.com  
 
The filter is calculated in real time based on the cutoff frequency set by fx control slider. 
Here is the algorithm. It uses a Hamming window which is calculated at the same time as 
the filter. 
 
/////////////////////////////////////////////////// ///////////////////  
//  
//  101  point windowed sinc lowpass filter from http :// www. dspguide . com/  
//  table 16- 1 
//  
void  lowPassWindowedSincFilter (  float * buf ,  float fc )  {  
     
    //  re - calculate 101 point lowpass filter kernel     
     
    int i ;  
    int m = 100 ;  
    float sum = 0;  
     
     
    for (  i = 0;  i < 101 ;  i ++ )  {  
        if (( i -  m /  2)  == 0 )  {  
            buf [ i ]  = 2 *  M_PI *  fc ;  
        }  
        else  {  
            buf [ i ]  = sin ( 2 *  M_PI *  fc *  ( i -  m /  2))  /  ( i -  m /  2);  
        }  
        buf [ i ]  = buf [ i ]  *  ( .54  -  .46  *  cos ( 2 *  M_PI *  i /  m ));  
    }  
     
    //  normalize for  unity gain at dc 
     
     
    for  (  i = 0 ;  i < 101  ;  i ++ )  {  
        sum = sum + buf [ i ];   
    }  
     
    for  (  i = 0 ;  i < 101  ;  i ++ )  {  
        buf [ i ]  = buf [ i ]  /  sum ;  
    }  
     
}  



 

 
Here is the implementation in convolutionFilter(): 
 
//  get mix fx control for  cutoff freq ( fc )  
     
    fc = ( THIS . micFxControl *  .18 )  + .001 ;  
     
    //  make filter with this fc 
     
    lowPassWindowedSincFilter (  filterBuffer ,  fc );  
 

 
The cutoff frequency .18 is expressed as a fraction of the Nyquist frequency (sample rate 
/ 2). At 44.1Khz the slider range is 22 Hz to 3970 Hz. 
 
Like the moving average filter, the convolution filter also requires floating point 
conversion and a ring buffer. The tail of the ring buffer is positioned 1124 samples 
behind the head to accommodate a 1024 sample slice of signal data and a 101 point filter 
size. 
 
The Accelerate vDSP framework provides a convenient function, vDSP_conv(), to 
perform convolution and correlation. Here is the code to run the filter: 
 
  //  ok now we have enough samples in the temp delay bu ffer to actually run the  
    //  filter .  For  example ,  if  slice size is 1024  and filterLength is 101  -  then we 
    //  should have 1124  samples in the tempDelayBuffer 
     
      
    //  do convolution 
     
    filterStride = - 1;       //  convolution 
    vDSP_conv (  signalBuffer ,  stride ,  filterBuffer + filterLength -  1,  filterStride ,  
resultBuffer ,  stride ,   resultLength ,  filterLength );   
     

 
The final step is to convert the sample vector from floating point to SInt16 format using 
the same method as with the moving average filter. 
 
This concludes our excursion through the time domain… 

FFT pass through 
The fast Fourier transform (fft) converts a time domain signal into the frequency domain. 
This example illustrates a forward and inverse fft using the Accelerate vDSP framework. 
 
The “vDSP programming guide” from the iOS developer library is an excellent resource.  
Sample code is included in the guide: 
 
The code for this example is in fftPassThrough(). 
 
Here is an outline of the steps involved: 
 



Prior to the running the AU graph: 
 
Allocate buffers and run vDSP_create_fftsetup() 
 
Inside the callback function: 
 

• Convert SInt16 sample vector to floating point using vDSP_vflt16() 
• Transform real vector into a split complex array using vDSP_ctoz() 
• Run the forward fft using vDSP_fft_zrip() 
• Convert the split complex vector to a complex interleaved vector for analysis 

using vDSP_ztoc() 
• Perform analysis using a vector processing loop 
• Run the inverse fft using vDSP_fft_zrip() 
• Scale the results using vDSP_vsmul() 
• Convert the split complex vector back to a complex interleaved vector using 

vDSP_ztoc() 
• Convert floating point format samples to SInt16 using vDSP_vfixr16() 

 
Before your mind glazes over, realize that most of the processing involves format 
conversion of one sort or another. Let’s break it down. 
 
The initial setup is done prior to launching the audio processing graph in [fftSetup] 
 
//////////////////////////////////////////////////  
//  Setup FFT -  structures needed by vdsp functions 
//  
-  ( void )  FFTSetup {  
     
    //  I ' m going to just convert everything to 1024  
     
     
    //  on the simulator the callback gets 512  frames even if  you set the buffer to 1024 ,  
so this is a temp workaround in our efforts 
    //  to make the fft buffer = the callback buffer ,   
     
     
    //  for  smb it doesn ' t matter if  frame size is bigger than callback buffer 
     
    UInt32 maxFrames = 1024 ;     //  fft size 
     
     
    //  setup input and output buffers to equal max frame size 
     
    dataBuffer = ( void *) malloc ( maxFrames *  sizeof ( SInt16 ));  
    outputBuffer = ( float *) malloc ( maxFrames * sizeof ( float ));  
    analysisBuffer = ( float *) malloc ( maxFrames * sizeof ( float ));  
     
    //  set the init stuff for  fft based on number of frames 
     
    fftLog2n = log2f ( maxFrames );         //  log base2 of max number of frames ,  eg .,  10 for  
1024  
    fftN = 1 << fftLog2n ;                    //  actual max number of frames ,  eg .,  1024  -  
what a silly way to compute it 
 
     
    fftNOver2 = maxFrames / 2;                 //  half fft size 
    fftBufferCapacity = maxFrames ;           //  yet another way of expressing fft size 
    fftIndex = 0;                            //  index for  reading frame data in callback 



     
    //  split complex number buffer 
    fftA . realp = ( float *) malloc ( fftNOver2 *  sizeof ( float ));         //   
    fftA . imagp = ( float *) malloc ( fftNOver2 *  sizeof ( float ));         //   
     
     
    //  zero return  indicates an error setting up internal buffers 
     
    fftSetup = vDSP_create_fftsetup ( fftLog2n ,  FFT_RADIX2 );  
    if (  fftSetup == ( FFTSetup )  0)  {  
        NSLog (@"Error - unable to allocate FFT setup buffers"  );  
    }  
     
}  
 

 
Note that fftSetup is an instance variable which will be passed as an argument to the fft 
function. fftSetup is a pointer to predefined weights arrays (twiddle factors) which boost 
performance of the fft at runtime.  
 
The important considerations in the setup are  
 

1. Set the fft size (N) to the largest size fft that you plan to use  
2. Preallocate any buffers that will be used inside the callback 

 
Inside the callback, the fft function needs a sample vector in a split complex format. 
Please refer the vDSP programming guide (mentioned above) for details. Suffice to say 
there is a standard procedure for converting vectors in and out of this format.  Here is the 
code from fftPassThrough() to do format conversion and run the forward fft: 
 
//  ***************  FFT ***************       
        //  convert Sint16 to floating point 
         
        vDSP_vflt16 (( SInt16 *)  dataBuffer ,  stride ,  ( float *)  outputBuffer ,  stride ,  
bufferCapacity );  
         
         
        //  
        //  Look at the real signal as an interleaved complex vector by casting it .  
        //  Then call the transformation function  vDSP_ctoz to get a split complex  
        //  vector ,  which for  a real signal ,  divides into an even - odd configuration .  
        //  
         
        vDSP_ctoz (( COMPLEX*) outputBuffer ,  2,  &A,  1,  nOver2 );  
         
        //  Carry out a Forward FFT transform .  
         
        vDSP_fft_zrip ( fftSetup ,  &A,  stride ,  log2n ,  FFT_FORWARD);  
         

 
At this point the frequency domain data is stored in the split complex vector: A. In this 
example we’ll find the frequency of the input signal by looking for the bin with the 
greatest amplitude. The first step is to convert the split complex vector back to an 
interleaved complex vector. Then we can loop through the vector to analyze the 
frequency domain samples. 
 
        //  The output signal is now in a split complex form .  Use the vDSP_ztoc to get 
        //  an interleaved complex vector .  



         
        vDSP_ztoc (& A,  1,  ( COMPLEX *) analysisBuffer ,  2,  nOver2 );  

         
        //  for  display purposes ...  
        //  
        //  Determine the dominant frequency by taking the mag nitude squared and  
        //  saving the bin which it resides in .  This isn ' t precise and doesn ' t 
        //  necessary get the "fundamental"  frequency ,  but its quick and sort of works ...  
         
        //  note there are vdsp functions to do the amplitude calcs 
         
        float dominantFrequency = 0;  
        int bin = - 1;  
        for  ( int i =0;  i <n;  i +=2)  {  
            float curFreq = MagnitudeSquared ( analysisBuffer [ i ],  analysisBuffer [ i +1]);  
            if  ( curFreq > dominantFrequency )  {  
                dominantFrequency = curFreq ;  
                bin = ( i +1)/ 2;  
            }  
        }  
         
        dominantFrequency = bin *( THIS . graphSampleRate / bufferCapacity );  
         
        //  printf ( "Dominant frequency: %f   \n"  ,  dominantFrequency );  
        THIS . displayInputFrequency = ( int )  dominantFrequency ;    //  set instance variable 
with detected frequency 
         
 

 
The interleaved complex vector is in the format: 
 
real = buffer[i]  
imaginary = buffer[i + 1] 
 
from 0 to N/2 
 
MagnitudeSquared() calculates the square of the magnitude ((re * re) + (im * im)). To get 
the actual magnitude you would take the square root of the result. But we’re in kind of a 
hurry. So the assumption is that the bin with the greatest “magnitude squared” value 
probably represents the fundamental frequency. Anyway, it is the “dominant” frequency.  
 
The result of the calculation is stored in the instance variable: displayInputFrequency 
which will be discovered by the view controller. 
 
In the next section we’ll explore a more accurate (and costlier) method of pitch detection. 
 
The final step here is to reverse the process. Let’s backtrack to the point of the forward 
fft. The code to undo the fft is almost a mirror image of the steps leading up to the 
forward transform, except that after the inverse transform, the results need to be scaled 
back to the original level. Here’s the code: 
 
 
//  Carry out an inverse FFT transform .  
         
        vDSP_fft_zrip ( fftSetup ,  &A,  stride ,  log2n ,  FFT_INVERSE );  
         
        //  scale it 
         



        float scale = ( float )  1.0  /  ( 2 *  n );                      
        vDSP_vsmul ( A. realp ,  1,  &scale ,  A . realp ,  1,  nOver2 );  

        vDSP_vsmul ( A. imagp ,  1,  &scale ,  A . imagp ,  1,  nOver2 );  
         
         
        //  convert from split complex to complex interleaved 
         
        vDSP_ztoc (& A,  1,  ( COMPLEX *)  outputBuffer ,  2,  nOver2 );  
         
        //  now convert from float to Sint16 
         
        vDSP_vfixr16 (( float *)  outputBuffer ,  stride ,  ( SInt16 *)  sampleBuffer ,  stride ,  
bufferCapacity );  
         
         

         
Had we wanted to modify the samples while in the frequency domain – for example, 
inside the processing loop where we calculated frequency, we would have used  
vDSP_ctoz() to convert back to a split Complex vector before performing the inverse fft. 
 
We’ll see an example of that in the next section. 
 
If all this seems overwhelming, try using the code as a cookbook. When you cook enough 
pots of Chili it suddenly makes sense. 
 

STFT, pitch shifting and detection 
 
The short time Fourier transform combined with phase analysis gives a more precise 
picture of frequency, and can be used to perform real-time pitch shifting. 
 
The code in this example is adapted from an excellent article and sample code by Stephan 
M. Bernsee from DSP dimension.  Please read the article if you want to understand how 
this code works. 
 
http://www.dspdimension.com/admin/pitch-shifting-using-the-ft/ 
 
 
The adaptation of the code involved: 
 

• Formatting signal vectors (as described in the fftPassThrough example above) 
• Replacing fft functions with vDSP fft functions 
• Saving frequency analysis data in a MixerHostAudio instance variable for display 

 
 
First lets look at the wrapper for the STFT code in fftPitchShift().  
 
 
//  ConvertInt16ToFloat 
     
    vDSP_vflt16 (( SInt16 *)  sampleBuffer ,  stride ,  ( float *)  analysisBuffer ,  stride ,  
bufferCapacity );  
     



    //  run the pitch shift 
     
    //  scale the fx control 0-> 1 to range of pitchShift .5 -> 2.0  
     
    pitchShift = ( THIS . micFxControl *  1.5 )  + .5 ;  

     
    //  osamp should be at least 4,  but at this time my ipod touch gets very unhappy w ith  
    //  anything greater than 2 
     
    osamp = 4;  
    fftSize = 1024 ;      //  this seems to work in real time since we are actua lly doing 
the fft on smaller windows 
     
    smb2PitchShift (  pitchShift ,  ( long )  inNumberFrames ,  
                   fftSize ,   osamp ,  ( float )  THIS . graphSampleRate ,  
                   ( float *)  analysisBuffer ,  ( float *)  outputBuffer ,  
                   fftSetup ,  &frequency );  
     
     
    //  display detected pitch 
    
     
    THIS . displayInputFrequency = ( int )  frequency ;  
     
     
    //  very very cool effect but lets skip it temporarily      
    //     THIS . sinFreq = THIS . frequency ;    //  set synth frequency to the pitch detected 
by microphone 
     
     
     
    //  now convert from float to Sint16 
     
    vDSP_vfixr16 (( float *)  outputBuffer ,  stride ,  ( SInt16 *)  sampleBuffer ,  stride ,  
bufferCapacity );  
     

 

 
 
The sample vector is converted from SInt16 to floating point. The pitch shift factor is set 
by the fx control slider. Then everything gets passed into smb2PitchShift().   
 
The osamp variable specifies the overlap or oversampling factor. This value should be a 
power of 2 and should be at least four to produce reasonably accurate pitch shifting. 
Higher numbers work better but require more processing time. There will be a point of 
diminishing returns. There will also be a point where the callback can’t keep up. 
 
Here are the original comments in the source code from Stephan M. Bernsee. 
 
 
/************************************************** **************************  
*  
*  NAME:  smbPitchShift . cpp 
*  VERSION:  1.2  
*  HOME URL:  http :// www. dspdimension . com 
*  KNOWN BUGS:  none 
*  
*  SYNOPSIS:  Routine for  doing pitch shifting while  maintaining 
*  duration using the Short Time Fourier Transform .  
*  
*  DESCRIPTION :  The routine takes a pitchShift factor value which is between 0.5  
*  ( one octave down )  and 2.  ( one octave up ).  A value of exactly 1 does not change 



*  the pitch .  numSampsToProcess tells the routine how many sampl es in indata [ 0...  
*  numSampsToProcess - 1]  should be pitch shifted and moved to outdata [ 0 ...  

*  numSampsToProcess - 1].  The two buffers can be identical ( ie .  it can process the 
*  data in - place ).  fftFrameSize defines the FFT frame size used for  the 
*  processing .  Typical values are 1024 ,  2048  and 4096.  It may be any value <= 
*  MAX_FRAME_LENGTH but it MUST be a power of 2.  osamp is the STFT 
*  oversampling factor which also determines the over lap between adjacent STFT 
*  frames .  It should at least be 4 for  moderate scaling ratios .  A value of 32 is 
*  recommended for  best quality .  sampleRate takes the sample rate for  the signal  
*  in unit Hz ,  ie .  44100  for  44.1  kHz audio .  The data passed to the routine in  
*  indata []  should be in the range [- 1.0 ,  1.0 ),  which is also the output range  
*  for  the data ,  make sure you scale the data accordingly ( for  16bit signed integers 
*  you would have to divide ( and multiply )  by 32768 ).   
 
 

 
It may be instructive to compare the original code with the modified version in 
smb2PitchShift.m to see how the Accelerate vDSP functions were incorporated. There is 
really not much difference in the use of the fft functions between this example and the 
fftPassThrough code. But the code here is more complicated and again I would 
recommend reading the article for a full understanding of STFT and pitch detection using 
phase change. 
 

Synthesizer Callback 
The synthesizer callback generates a sine wave with amplitude controlled by an envelope 
generator. The envelope is triggered by pressing a button in the user interface. 
 
The code for generating a sine wave is also discussed in the Ring Modulator section.  
 
The synthesizer callback differs from the other callbacks in this project, in that it does not 
process input samples from a source. It generates samples.   
 
The asbd for the callback is SInt16 format – eliminating the need to convert from fixed 
point 8.24 and back again.  
 
The callback function is synthRenderCallback() 
 
 
///////////////////////////////////////////////  
//   synth callback -  generates a sine wave with 
//  
//   freq = MixerHost . sinFreq 
//   phase = MixerHost . sinPhase 
//   note on = MixerHost . synthNoteOn 
//  
//   its a simple example of a synthesizer sound gener ator 
//  
 
static OSStatus synthRenderCallback (  
                                   void *                            inRefCon ,  
                                   AudioUnitRenderA ctionFlags *  ioActionFlags ,  
                                   const AudioTimeS tamp *            inTimeStamp ,  
                                   UInt32                           inBusNumber ,  
                                   UInt32                           inNumberFrames ,  
                                   AudioBufferList *                 ioData )  {  
     
     



    MixerHostAudio *  THIS = ( MixerHostAudio *) inRefCon ;   //  scope reference that allows 
access to everything in MixerHostAudio class 
     
     
     
    float freq = THIS . sinFreq ;       //  get frequency data from instance variables 
    float phase = THIS . sinPhase ;  
 
     
    float sinSignal ;                 //  
    float envelope ;                  //  scaling factor from envelope generator 0-> 1 
     
     
    //   NSLog (@"inside callback - freq: %f phase: %f" ,  freq ,  phase );  
     
     
    double phaseIncrement = 2 *  M_PI *  freq /  THIS . graphSampleRate ;  //  phase change per 
sample 
     
     
    AudioSampleType * outSamples ;  
    outSamples = ( AudioSampleType *)  ioData -> mBuffers [ 0]. mData;  
     
    
     
//  if  a note isn ' t being triggered just fill the frames with zeroes and bail .  
//  interesting note :  when we didn ' t zero out the buffer ,  the microphone was 
//  somehow activated on the synth channel ...  weird ???  
//  
//  synth note triggering is handled by envelope gener ator now but I left above comment -  
to illustrate 
//  what can happen if  your callback doesn ' t fill its output data buffers 
     
/*  
    if (  noteOn == NO )  {  
        memset ( outSamples ,  0,  inNumberFrames *  sizeof ( SInt16 ));  
        return  noErr ;  
    }  
 
*/  
     
//  build a sine wave ( not a teddy bear )  
     
    for  ( UInt32 frameNumber = 0;  frameNumber < inNumberFrames ;  ++frameNumber )  {  
         
         
        sinSignal = sin ( phase );  //  if  we were using float samples this would be the valu e 
     
         
        //  scale to half of maximum volume level for  integer samples 
        //  and use envelope value to determine instantaneous level 
         
     
        //  envelope = 1.0 ;  
        envelope = getSynthEnvelope (  inRefCon );   //  envelope ranges from 0-> 1 
 
         
        outSamples [ frameNumber ]  =  ( SInt16 )  ((( sinSignal *  32767.0 f )  /  2)  *  envelope );            
        phase = phase + phaseIncrement ;  //  increment phase 
         
        if ( phase >= ( 2 *  M_PI *  freq ))  {          //  phase wraps around every cycle 
            phase = phase -  ( 2 *  M_PI *  freq );  
        }  
         
    }  
     
    
     
    THIS . sinPhase = phase ;       //  save for  next time this callback is invoked 
     
    return  noErr ;  



     
}     
 

 
Frequency, phase, and noteOn data is acquired via instance variables.  
 
The sine wave is generated in steps based on the sample rate. At 44.1 KHz each sample 
represents 1/44100th of a cycle. Each sample value is calculated by the sin function 
operating on a phase value which iterates through a cycle from 0->1 (or 0->2 PI radians) 
split into 44100 steps. The phase value is saved in an instance variable after processing 
each slice. It could also have been preserved in a static variable, as was done in the ring 
modulator. 

Envelope Generator 
 
The envelope returns a scaling factor from 0->1. It is calculated for each sample and 
multiplied by the sine wave data. Here is the code for the envelope generator. It is an AR 
(attack release) generator implemented as a finite state machine. 
 
 
//  simple AR envelope generator for  synth note 
//  
//  for  now ,  attack and release value params hardcoded in this function  
//  
 
#define ENV_OFF 0 
#define ENV_ATTACK 1 
#define ENV_RELEASE 2 
 
float getSynthEnvelope (  void *  inRefCon )  {  
     
    MixerHostAudio *  THIS = ( MixerHostAudio *) inRefCon ;   //  access to mixerHostAudio scope 
     
    static int state = ENV_OFF;            //  current state 
    static int keyPressed = 0;             //  current ( previous )  state of key 
    static float envelope = 0.0 ;           //  current envelope value 0-> 1 
     
    float attack = 1000.0 ;                      //  attack time in samples 
    float release = 40000.0 ;                    //  release time in samples 
     
    float attackStep ;                        //  amount to increment each sample during 
attack phase 
    float releaseStep ;                       //  amount to decrement each sample during 
release phase 
     
    int newKeyState ;                        //  new on / off state of key 
     
    //  start  
     
    attackStep = 1.0  /  attack ;               //  calculate attack and release steps 
    releaseStep = 1.0  /  release ;  
     
    newKeyState = THIS . synthNoteOn == YES ? 1 :  0;   
     
    //  printf ( "envelope: %f, state: %d, keyPressed: %d, newKeySta te: %d\n" ,  envelope ,  
state ,  keyPressed ,  newKeyState );  
     
    if ( keyPressed == 0)  {        //  key has been up 
        if ( newKeyState == 0)  {       //   if  key is still up 
            switch ( state )   
            {  
                case  ENV_RELEASE:  



                    //  printf ( "dec: env: %f, rs: %f\n" ,  envelope ,  releaseStep );  
                    envelope -=  releaseStep ;  
                    if ( envelope <= 0. )  {  
                        envelope = 0.0 ;  
                        state = ENV_OFF;  
                    }  
                    break ;  
                default :  
                    state = ENV_OFF;     //  this should already be the case  
                    envelope = 0.0 ;       
                    break ;  
            }         
        }  
        else  {   //  key was just pressed 
            keyPressed = 1;                  //  save new key state 
            state = ENV_ATTACK;              //  change state to attack 
             
        }  
    }      
    else  {   //  key has been down 
         
        if ( newKeyState == 0)  {       //  if  key was just released 
            keyPressed = 0;          //  save new key state 
            state = ENV_RELEASE;  
             
        }  
        else  {                   //  key is still down 
            switch ( state )   
            {  
                     
                case  ENV_ATTACK:   
                    //  printf ( "inc: env: %f, as: %f\n" ,  envelope ,  attackStep );      
                    envelope += attackStep ;  
                    if  ( envelope >= 1.0 )  {  
                        envelope = 1.0 ;  
                    }  
                    break ;  
                     
                default :  
                    state = ENV_ATTACK;          //  this should already be the case  
                    break ;  
            }      
        }      
         
    }  
     
     
    return  ( envelope );  
}  
 
 

 
Attack and release values are hard coded and represented as a “number of samples” – but 
could easily be converted to milliseconds and controlled in the user interface. 
 
The attack state begins when a key (button) is pressed and rises to its full value during the 
duration of the attack. It then holds its maximum value. The release state begins when a 
key is released and continues for the duration of the release – at which point the value of 
the envelope is 0 – indicating the note is off. 
 
To implement a real synthesizer you would probably add functions to produce wave 
forms, modulators, filters, and the ability to configure the signal and control path.  
 



The core midi framework could also be used to provide a midi interface for your 
synthesizer in the same manner as it’s used in the midi sampler example. 
  

Development 
 
The source code for this project is in a github repository at: 
https://github.com/tkzic/audiograph 
 
I would be very interested in your thoughts and ideas. Please contact me at 
audiograph@zerokidz.com 
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